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9.5 CONIC SECTIONS 
 

The conic sections are the curves obtained when a cone is cut by a 

plane  (Fig. 1).  They have attracted the interest of mathematicians 

since the time of Plato, and they are still used by scientists and 

engineers.  The early Greeks were interested in these shapes 

because of their beauty and their representations by sets of points 

that met certain distance definitions  (e.g., the circle is the set of 

points at a fixed distance from a given point).  Mathematicians and 

scientists since the 1600s have been interested in the conic sections 

because the planets, moons, and other celestial objects follow paths 

that are (approximately) conic sections, and the reflective properties of the conic sections are useful for 

designing telescopes and other instruments.  Finally, the conic sections give the complete answer to the 

question, "what is the shape of the graph of the general quadratic equation  Ax2 + Bxy + Cy2 + Dx + Ey + 

F = 0 ?" 
 

This section discusses the "cut cone" and distance definitions of the conic sections and shows their standard 

equations in rectangular coordinate form.  The section ends with a discussion of the discriminant, an easy 

way to determine the shape of the graph of any standard quadratic equation 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 .  Section 9.6 examines the polar coordinate definitions of the conic 

sections, some of the reflective properties of the conic sections, and some of their applications. 

 
Cutting A Cone 
 

When a (right circular double) cone is cut by a plane, only a few shapes are possible, and these are called 

the conic sections  (Fig. 1).  If the plane makes an angle of  θ  with the horizontal, and  θ < α , then the set 

of points is an ellipse (Fig. 2).  When  θ = 0 < α , we have a circle, a special case of an ellipse (Fig. 3).  If  

θ = α , a parabola is formed (Fig. 4), and if  θ > α ,  a hyperbola is formed (Fig. 5).  When the plane goes 

through the vertex of the cone, degenerate conics are formed:  the degenerate ellipse (θ < α) is a point, the 

degenerate parabola (θ = α) is a line, and a degenerate hyperbola (θ > α) is a pair of intersecting lines. 
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The conic sections are lovely to look at, but we will not use the conic sections as pieces of a cone because 

the "cut cone" definition of these shapes does not easily lead to formulas for them.  To determine formulas 

for the conic sections it is easier to use alternate definitions of these shapes in terms of distances of points 

from fixed points and lines.  Then we can use the formula for distance between two points and some 

algebra to derive formulas for the conic sections. 

 

The Ellipse 
 

Ellipse: An ellipse is the set of all points P for which the sum of the 

distances from P to two fixed points (called foci) is a constant:    

 dist(P, one focus) + dist(P, other focus) = constant.  (Fig. 6) 
 
Example 1: Find the set of points whose distances from the foci  F1 = (4,0)   

 and  F2 = (–4, 0) add up to 10. 
 

Solution: If the point P = (x, y)  is on the ellipse, then the distances  PF1 =  (x–4)2 + y2   and     

  PF2 =  (x+4)2 + y2   must total  10 so we have the equation 
 

  PF1 + PF2 =   (x–4)2 + y2   +   (x+4)2 + y2    =  10  (Fig. 7) 
 

 Moving the second radical to the right side of the equation, squaring both  

 sides, and simplifying, we get 
 

  4x + 25 =  5  (x+4)2 + y2    . 
 

 Squaring each side again and simplifying, we have    225 = 9x2 + 25y2  so,  

 after dividing each side by 225, 
 

      
x2
25   +  

y2
9    = 1 . 

 
Practice 1: Find the set of points whose distances from the foci  F1 = (3,0)  and  F2 = (–3, 0) add up to 10. 
 

Using the same algebraic steps as in Example 1, it can be shown  (see the Appendix at the end of the 
problems)  that the set of points  P = (x,y)  whose distances from the foci  F1 = (c,0)  and  F2 = (–c, 0)   add 

up to 2a  (a > c)  is described by the formula 
 

    
x2

a2   +  
y2

b2   = 1  where  b2 = a2 – c2 . 
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 Ellipse 
 

 The standard formula for an ellipse is     
x2

a2   +  
y2

b2   =  1 . 

 
 a = b: The ellipse is a circle. 
 
 
 a > b:  (Fig. 8a) The vertices are at  ( ±a, 0 ) on the  x–axis, 

   the foci are at  ( ±c, 0 )  with  c =  a2 – b2   , and 

   for any point  P  on the ellipse,   

   dist( P, one focus) + dist( P, other focus) = 2a. 

   The length of the semimajor axis is  a. 
 
 
 a < b:  (Fig. 8b) The vertices are at  ( 0, ±b ) on the  y–axis, 

   the foci are at  ( 0, ±c )  with  c =  b2 – a2   , and 

   for any point  P  on the ellipse,   

   dist( P, one focus) + dist( P, other focus) = 2b. 

   The length of the semimajor axis is  b. 
    

 

Practice 2: Use the information in the box to determine the vertices, foci, and length of the semimajor 

axis of the ellipse    
x2
169   +  

y2
25   =  1 . 

 
 

The Parabola 
 

Parabola: A parabola is the set of all points P for which the distance from P  

 to a fixed point (focus) is equal to the distance from P to a  

 fixed line (directrix):  dist(P, focus) = dist(P, directrix).   (Fig. 9) 
 

Example 2: Find the set of points  P = (x,y) whose distance from the  

 focus  F = (4,0)  equals the distance from the directrix  x = –1. 

 

Solution: The distance  PF =  (x–4)2 + y2  , and the distance from  P to  

to  

           the directrix  (Fig. 10)  is  x+1. If these two distances are equal then  

          we have the equation     (x–4)2 + y2   = x + 1 . 
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Squaring each side,    

  (x–4)2 + y2  = (x+1)2    

 so    x2 – 8x + 16 + y2 = x2 + 2x + 1.   
 

This simplifies to  x = 
1
10  y2 + 

3
2  , the equation 

of a parabola opening to the right  (Fig. 11). 
 

Practice 3: Find the set of points  P = (x,y)  

whose distance from the focus  F = (0,2)  

 equals the distance from the directrix  y = –2.. 
 
  
 Parabola 
 

 The standard parabola  y = ax2  opens around the y–axis   

 (Fig. 12a)  with vertex = (0,0),      focus = ( 0 , 
1
4a  ) , and  

                  directrix  y = – 
1
4a   . 

 

 The standard parabola  x = ay2  opens around the x–axis   

 (Fig. 12b)  with  vertex = (0,0),    focus = ( 
1
4a   , 0 ) , and  

                 directrix   x = – 
1
4a   . 

      
 

Proof for the case y = ax2 : 

 The set of points  p = (x,y)  that are equally distant from the 

focus   

 F = ( 0 , 
1
4a  )  and the directrix  y = – 

1
4a     satisfy the distance 

equation   

 PF = PD  so 
 

   x2 + (y – 
1
4a )2    =  (y + 

1
4a  ) .  Squaring each side, we have 

 

x2 + (y – 
1
4a  )2  =  (y + 

1
4a  )2   and   x2 + y2 – 

2
4a  y + 

1
16a2   =  y2 + 

2
4a  y + 

1
16a2   .   

 

Then   x2 =  
2
4a  y + 

2
4a  y  = 

1
a  y  and, finally,   y = ax2 . 
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Practice 4: Prove that the set of points  P= (x,y)  that are equally distant from the focus   

 F = ( 
1
4a   , 0 ) , and directrix  x = – 

1
4a    satisfy the equation  x = ay2 . 

Hyperbola 
 

Hyperbola: A hyperbola is the set of all points P for which the 

difference of the distances from  P to two fixed points  

 (foci) is a constant:   

 dist(P, one focus) – dist(P, other focus) = constant.  (Fig. 13) 
 

Example 3: Find the set of points for which the difference of  
 the distances from the points to the foci  F1 = (5,0)   

 and  F2 = (–5, 0)  is always  8. 

 
Solution: If the point P = (x, y)  is on the hyperbola, then the  
 

 difference of the distances  PF1 =  (x–5)2 + y2   and  PF2 =  (x+5)2 + y2   is  8 so we have  
  
 the equation 
 

  PF1 – PF2 =     (x–5)2 + y2    –    (x+5)2 + y2    =  8   (Fig. 14). 
 
 Moving the second radical to the right side of the equation, squaring both sides, and simplifying, we get 
 

  5x + 16 =  –4  (x+5)2 + y2   . 
 
 Squaring each side again and simplifying, we have    9x2 – 16y2  = 144 . 
 

 After dividing each side by 144,    
x2
16   –  

y2
9    = 1. 

 
 If we start with the difference  PF2 – PF1 = 8, we have the equation 
 

   (x + 5)2 + y2    –    (x – 5)2 + y2    =  8 . 
 
 Solving this equation, we again get   9x2 – 16y2  = 144  and   
 

   
x2
16   –  

y2
9    = 1 . 

 

Using the same algebraic steps as in the Example 3, it can be shown  (see the Appendix at the end of the 
problems)  that the set of points  P = (x,y)  whose distances from the foci  F1 = (c,0)  and  F2 = (–c, 0)   

differ by  2a  (a < c)  is described by the formula 
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x2

a2   –  
y2

b2   = 1   where  b2 = c2 – a2 . 

 
  
 Hyperbola 
 

  The standard hyperbola     
x2

a2   –  
y2

b2   =  1   

 
  opens around the  x–axis  (Fig. 15a)   
 

  with vertices at  ( ±a, 0) , foci at  ( ± a2 + b2   ,0) ,  
 

  and linear asymptotes  y = ± 
b
a  x. 

 

  The standard hyperbola     
y2

b2   –  
x2

a2   =  1   

 
  opens around the  y–axis  (Fig. 15b)   
 

  with vertices at  ( 0, ±b ) , foci at  ( 0, ± a2 + b2  ) ,  
 

  and linear asymptotes  y = ± 
b
a  x. 

    
 

 
 

Practice 5: Graph the hyperbolas    
x2
25   –  

y2
16   =  1  and    

y2
25   –  

x2
16   =  1  and find the linear  

 asymptotes for each hyperbola. 
 

Visually distinguishing the conic sections 
 

If you only observe a small part of the graph of a conic section, it may be impossible to determine which 

conic section it is, and you may need to look at more of its graph.  Near a vertex or in small pieces, all of 

the conic sections can be quite similar in appearance, but on a larger graph the ellipse is easy to distinguish 

from the other two.  On a large graph, the hyperbola and parabola can be distinguished by noting that the 

hyperbola has two linear asymptotes and the parabola has no linear asymptotes. 
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The General Quadratic Equation and the Discriminant 
 
Every equation that is quadratic in the variables  x  or  y  or both can be written in the form 
 
 Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  where  A  through  F  are constants. 
 

The form  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0   is called the general quadratic equation. 

 

In particular, each of the conic sections can be written in the form of a general quadratic equation by 

clearing all fractions and collecting all of the terms on one side of the equation.  What is perhaps surprising 

is that the graph of a general quadratic equation is always a conic section or a degenerate form of a conic 

section.  Usually the graph of a general quadratic equation is not centered at the origin and is not symmetric 

about either axis, but the shape is always an ellipse, parabola, hyperbola, or degenerate form of one of 

these. 
 

Even more surprising, a quick and easy calculation using just the coefficients  A, B, and C  of the general 

quadratic equation tells us the shape of its graph:  ellipse, parabola, or hyperbola.  The value obtained by 

this simple calculation is called the discriminant of the general quadratic equation. 

 
  
 Discriminant 
 
 The discriminant of the the general quadratic form  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0   
 
 is the value  B2 – 4AC. 
    

 
Example 4: Write each of the following in its general quadratic form and calculate its discriminant. 
 

 (a) 
x2
25   +  

y2
9    = 1 (b) 3y + 7 = 2x2 + 5x + 1 (c)  5x2 + 3 = 7y2 – 2xy + 4y + 8 

 
Solution:  (a)  9x2 + 25y2 – 225 = 0  so  A = 9, C = 25, F = –225, and B = D = E = 0.  B2 – 4AC = –900 . 

 
 (b)  2x2 + 5x – 3y – 6 = 0  so  A = 2, D = 5, E = –3, F = –6, and  B = C = 0.  B2 – 4AC = 0 . 
 

 (c)  5x2 + 2xy – 7y2 – 4y – 5 = 0  so  A = 5, B = 2, C = –7, D = 0, E = –4 and F = –5. 

  B2 – 4AC = 4 – 4(5)(–7) = 144 . 
 

Practice 6: Write each of the following in its general quadratic form and calculate its discriminant. 
 

 (a) 1 =  
x2
36   –  

y2
9     (b) x = 3y2 – 5 (c) 

x2
16   +  

(y–2)2
25    = 1 
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One very important property of the discriminant is that it is invariant under translations and rotations, its 

value does not change even if the graph is rigidly translated around the plane and rotated.  When a graph is 

shifted or rotated or both, its general quadratic equation changes, but the discriminant of the new quadratic 

equation is the same value as the discriminant of the original quadratic equation.  And we can determine the 

shape of the graph simply from the sign of the discriminant. 

 
  
 Quadratic Shape Theorem 
 

 The graph of the general quadratic equation  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  is 
 
 an ellipse if   B2 – 4AC < 0 (degenerate forms:  one point or no points) 

 a parabola if   B2 – 4AC = 0 (degenerate forms:  two lines, one line, or no points) 

 a hyperbola if   B2 – 4AC > 0 (degenerate form:  pair of intersecting lines). 
     
 

The proofs of this result and of the invariance of the discriminant under translations and rotations are 

"elementary" and just require a knowledge of algebra and trigonometry, but they are rather long and are 

very computational.  A proof of the invariance of the discriminant under translations and rotations and of 

the Quadratic Shape Theorem is given in the Appendix after the problem set. 
 

Example 5: Use the discriminant to determine the shapes of the graphs of the following equations. 

 (a) x2 + 3xy + 3y2 = – 7y – 4 (b) 4x2 + 4xy + y2 = 3x – 1 (c) y2 – 4x2 = 0 . 
 

Solution: (a) B2 – 4AC = 32 – 4(1)(3) = –3 < 0.  The graph is an ellipse. 

 (b) B2 – 4AC = 42 – 4(4)(1) = 0.  The graph is a parabola. 

(c) B2 – 4AC = 02 – 4(–4)(1) = 16 > 0.  The graph is a hyperbola –– actually a degenerate 

hyperbola.  The graph of  0 = y2 – 4x2 = (y + 2x)(y – 2x)  consists of the two lines  

 y = –2x  and y = 2x . 
 

Practice 7: Use the discriminant to determine the shapes of the graphs of the following equations. 

 (a) x2 + 2xy = 2y2 + 4x + 3 (b) y2 + 2x2 = xy – 3y + 7 (c) 2x2– 4xy = 3 + 5y – 2y2 . 
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Sketching Standard Ellipses and Hyperbolas 
 

The graphs of general ellipses and hyperbolas require plotting lots of points (a computer or calculator can 

help), but it is easy to sketch good graphs of the standard ellipses and hyperbolas.  The steps for doing so 

are given below. 
 

Graphing the Standard Ellipse  
x2

a2   +  
y2

b2   =  1 

1. Sketch short vertical line segments at the points  (±a, 0)  

on the x–axis  and short horizontal line segments at the 

points  (0, ±b)  on the y–axis  (Fig. 16a).  Draw a  

 rectangle whose sides are formed by extending the line 

segments. 

 

2. Use the tangent line segments in step 1 as guide to 

sketching the ellipse  (Fig. 16b).  The graph of the  

 ellipse is always inside the rectangle except at the 4  

 points that touch it. 

 

 

 

Graphing the Standard Hyperbolas   
x2

a2   –  
y2

b2   =  1   and     
y2

b2   –  
x2

a2   =  1 

1. Sketch the rectangle that intersects the x–axis at the points  (±a, 0)  and the y–axis at the  

 points  (0, ±b).   (Fig. 17a) 

2. Draw the lines which go through the origin and the corners of the rectangle from step 1.  (Fig. 17b) 

 These lines are the asymptotes of the hyperbola. 
 

3. For    
x2

a2   –  
y2

b2   =  1,  plot the points  (±a, 0) on the hyperbola, and use the asymptotes from 

step 2 as a guide to sketching the rest of the hyperbola.  (Fig. 17c) 
 

3'. For    
y2

b2   –  
x2

a2   =  1,  plot the points  (0, ±b) on the hyperbola, and use the asymptotes from 

step 2 as a guide to sketching the rest of the hyperbola.  (Fig. 17d) 

The graph of the hyperbola is always outside the rectangle except at the  2  points which touch it. 
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Symmetry of the Conic Sections 
 

Symmetry properties of the conic sections can simplify the task of graphing  

them.  A parabola has one line of symmetry, so once we have graphed half of 

a parabola we can get the other half by folding along the line of symmetry.   

An ellipse and a hyperbola each have two lines of symmetry, so once we  

have graphed one fourth of an ellipse or hyperbola we can get the rest of the 

graph by folding along each line of symmetry. 
 

• The parabola is symmetric about the line through the focus and  

  the vertex  (Fig. 18). 

• The ellipse is symmetric about the line through the two foci.   

  It is also symmetric about the perpendicular bisector of the  

  line segment through the two foci (Fig. 19). 

• The hyperbola is symmetric about the line through the two foci  

  and about the perpendicular bisector of the 

  line segment through the two foci  (Fig. 20). 
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The Conic Sections as "Shadows of Spheres" 
 

There are a lot of different shapes at the beach on a sunny day, even conic sections.  Suppose we have a 

sphere resting on a flat surface and a point radiating light.   
 

• If the point of light is higher than the top of the sphere, then the shadow of the sphere is an 

ellipse (Fig. 21). 

• If the point of light is exactly the same height as the top of the sphere, then the shadow of 

the sphere is a parabola  (Fig. 22). 

• If the point of light is lower than the top of the sphere, then the shadow of the sphere is one 

branch of a hyperbola (Fig. 23). 

 
 
PROBLEMS   
 

1. What is the shape of the graph of the set of points whose distances from  (6,0)  and   

 (–6,0)  always add up to 20?  Find an equation for the graph. 
 

2. What is the shape of the graph of the set of points whose distances from  (2,0)  and   

 (–2,0)  always add up to 20?  Find an equation for the graph. 
 

3. What is the shape of the graph of the set of points whose distance from the point  

(0,5)  is equal to the distance from the point to the line  y = –5?  Find an equation for the graph. 
 

4. What is the shape of the graph of the set of points whose distance from the 

point  (2,0)  is equal to the distance from the point to the line  x = –4?    

 Find an equation for the graph.  
 

5. Give the standard equation for the ellipse in Fig. 24. 
 

6. Give the standard equation for the ellipse in Fig. 25. 
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7. What lines are linear asymptotes for the hyperbola  4x2 – 9y2 = 36,  and where are the foci? 
 

8. What lines are linear asymptotes for the hyperbola  25x2 – 4y2 = 100, and where are the foci? 
 

9. What lines are linear asymptotes for the hyperbola  5y2 – 3x2 = 15,  and where are the foci? 
 

10. What lines are linear asymptotes for the hyperbola  5y2 – 3x2 = 120,  and where are the foci? 
 

In problems 11–16, rewrite each equation in the form of the general quadratic equation  Ax2 + Bxy + Cy2 

+ Dx + Ey + F = 0  and then calculate the value of the discriminant.  What is the shape of each graph? 
 

11. (a) 
x2

4    +  
y2

25   = 1     (b)  
x2

a2   +  
y2

b2   = 1   12. (a) 
x2

4    –  
y2

25   = 1     (b)  
x2

a2   –  
y2

b2   = 1 

 

13. x + 2y = 1  +  
3

x – y  14. y =  
5 + 2y –x2

4x + 5y     
 

15. x =  
7x – 3 – 2y2

2x + 4y   16. x =  
2y2 + 7x – 3

2x + 5y    
 

Problems 17–20  illustrate that a small change in the value of just one coefficient in the quadratic equation  

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  can have a dramatic effect on the shape of the graph.   Determine the 

shape of the graph for each formula. 
 

17. (a) 2x2 + 3xy + 2y2 + (terms for  x, y, and a constant) = 0. 

 (b) 2x2 + 4xy + 2y2 + (terms for  x, y, and a constant) = 0. 

 (c) 2x2 + 5xy + 2y2 + (terms for  x, y, and a constant) = 0. 

 (d) What are the shapes if the coefficients of the  xy  term are  3.99, 4, and  4.01? 
 

18. (a) 1x2 + 4xy + 2y2 + (terms for  x, y, and a constant) = 0. 

 (b) 2x2 + 4xy + 2y2 + (terms for  x, y, and a constant) = 0. 

 (c) 3x2 + 4xy + 2y2 + (terms for  x, y, and a constant) = 0. 

 (d) What are the shapes if the coefficients of the  x2  term are  1.99, 2, and  2.01? 
 

19. (a) x2 + 4xy + 3y2 + (terms for  x, y, and a constant) = 0. 

 (b) x2 + 4xy + 4y2 + (terms for  x, y, and a constant) = 0. 

 (c) x2 + 4xy + 5y2 + (terms for  x, y, and a constant) = 0. 

 (d) What are the shapes if the coefficients of the  y2  term are  3.99, 4, and  4.01? 
 



9.5 Conic Sections  Contemporary Calculus 13 

20. Just changing a single sign can also dramatically change the shape of the graph. 

 (a) x2 + 2xy + y2 + (terms for  x, y, and a constant) = 0. 

 (b) x2 + 2xy – y2 + (terms for  x, y, and a constant) = 0. 
 

21. Find the volume obtained when the region enclosed by the ellipse   
x2

22   +  
y2

52  = 1  is rotated  

 (a)  about the  x–axis,  and  (b)  about the y–axis. 
 

22. Find the volume obtained when the region enclosed by the ellipse  
x2

a2   +  
y2

b2  = 1  is rotated  

 (a)  about the  x–axis,  and  (b)  about the y–axis. 
 

23. Find the volume obtained when the region enclosed by the hyperbola   
x2

22   –  
y2

52  = 1  and the vertical 

line   x = 10  is rotated (a)  about the  x–axis,  and  (b)  about the y–axis. 
 

24. Find the volume obtained when the region enclosed by the 

hyperbola   
x2

a2   –  
y2

b2  = 1  and the vertical line   x = L  

 (Fig. 26) is rotated (a)  about the  x–axis,  and  (b)  about  

 the y–axis. (Assume  a < L.) 

 

25. Find the ratio of the area of the shaded parabolic region in  

 Fig. 27 to the area of the rectangular region. 
 

26. Find the ratio of the volumes obtained when the parabolic 

and rectangular regions in Fig. 27  are rotated about the  y–

axis. 
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String Constructions of Ellipses, Parabolas, and Hyperbolas (Optional)  
 
All of the conic sections can be drawn with the help of some pins and string, and the directions and  

figures show how it can be done.  For each conic section, you are asked to determine and describe why 

each construction produces the desired shape. 
 
Ellipse:  Pin the two ends of the string to a board so the string is not taut.  Put the point of a pencil  

 in the bend in the string (Fig. 28), and, keeping the string taut, draw a curve. 
 
27. How is the distance between the vertices of the ellipse related to the length of the string? 
 

28. Explain why this method produces  

 an ellipse, a set of points whose 

distances from the two fixed points 

(foci) always sum to a constant.  

What is the constant? 
 

29. What happens to the shape of the 

ellipse as the two foci are moved closer together (and the piece of string stays the same 

length)?  Draw several ellipses using the same piece of string and different fixed points, and 

describe the results. 
 

Parabola:  Pin one end of the string to a board and the other end to the corner of a T–square bar that is the 

same length as the string.  Put the point of a pencil in the bend in the string (Fig. 29) and keep the 

string taut.  As the T–square is slid sideways, the pencil draws a curve. 
 
30. Explain why this method produces a parabola, a set of points whose distance from a fixed  

 point (one end of the string) is equal to the distance from a fixed line (the edge of the table). 
 

31. What happens if the length of the string is slightly shorter than the length of the T–square bar?  

Draw several curves with several slightly shorter pieces of string and describe the results.  

What shapes are the curves? 
 
32. Find a way to use pins, string and a pencil to sketch the graph of a hyperbola. 
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Section 9.5 PRACTICE  Answers 
 
Practice 1: F1 = (3,0),  F2 = (–3,0), and  P = (x,y).  We want  dist( F1, P) + dist(F2, P) = 10 so   

   dist( (x,y), (3,0) ) + dist( (x,y), (–3,0) )  = 10  and 

    (x–3)2 + y2   +  (x+3)2 + y2    =  10. 

 Moving the second radical to the right side and squaring, we get 

   (x–3)2 + y2 = 100 – 20 (x+3)2 + y2  +  (x+3)2 + y2   and   

   x2 – 6x + 9 + y2  = 100 – 20 (x+3)2 + y2  +  x2 + 6x + 9 + y2  so 

   –12x – 100 = – 20 (x+3)2 + y2  . 

 Dividing each side by –2 and then squaring, we have 

   36x2 + 600x + 2500 = 100( x2 + 6x + 9 + y2 )  so 

   1600 = 64x2 + 100y2  and   

   1 = 
64x2

1600   +  
100y2

1600    =  
x2

25   +  
y2

16   . 
 

Practice 2: a = 13  and  b = 5  so the vertices of the ellipse are  (13, 0) and (–13, 0).  The value of  c  is  

169 – 25   = 12  so the foci are (12, 0)  and  (–12,0).  The length of the semimajor axis is 13. 
 
Practice 3: dist( P, focus) = dist( P, directrix)  so  dist( (x,y), (0,2) ) = dist( (x,y), line y=–2): 
 

    (x–0)2 + (y–2)2   = y + 2. 
 

 Squaring, we get  x2 + y2 – 4y + 4 = y2 + 4y + 4  so  x2 = 8y  or  y =  
1
8  x2 . 

 

Practice 4: This is similar to Practice 3:  dist( P, focus) = dist( P, directrix)  so   

  dist( (x,y), ( 
1
4a  , 0) ) = dist( (x,y), line x = – 

1
4a  ).  Then 

  

  ( x – 
1
4a )2  + ( y – 0 ) 2  =  x + 

1
4a   .  Squaring each side we get 

 

  x2 – 2x 
1
4a   + 

1
16a2   + y2  =  x2  + 2x 

1
4a   +  

1
16a2    so   y2 = 

1
a  x   and  x = ay2  . 
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Practice 5: The graphs are shown in Fig. 30.  Both hyperbolas have the same linear asymptotes:   

 y = 
4
5  x  and  y = – 

4
5  x. 

 

 

 

 

 

 

 

 

 

 

 

 

Practice 6: (a) 324 = 9x2 – 36y2  so  9x2 – 36y2 – 324 = 0.   

  A = 9, B = 0, and C = –36  so  D = 0 – 4(9)(–36) = 576. 

 (b) 0x2 + 0xy + 3y2 – x – 5 = 0.   

  A = 0, B = 0, and C = 3  so  D = 0 – 4(0)(3) = 0. 

 (c) 25x2 + 16(y–2)2 = 400  so  25x2 + 16y2 – 64y + 48 – 400 = 0. 

  A = 25, B = 0, and C = 16  so  D = 0 – 4(25)(16) = –1600. 
 

Practice 7: (a) x2 + 2xy – 2y2 – 4x – 3 = 0. 

  A = 1, B = 2, C = –2  so  D = 4 – 4(1)(–2) = 12 > 0:  hyperbola. 

 (b) 2x2 – 1xy + 1y2 + 3y – 7 = 0. 

  A = 2, B = –1, C = 1  so  D = 1 – 4(2)(1) = –7 < 0:  ellipse. 

 (c) 2x2 – 4xy + 2y2 – 5y – 3 = 0.   

  A = 2, B = –4, and C = 2  so  D = 16 – 4(2)(2) = 0:  parabola. 
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Appendix for  9.5: Conic Sections 

 

Deriving the Standard Forms from Distance Definitions of the Conic Sections 

 

Ellipse 
 

Ellipse An ellipse is the set of all points P so the sum of the distances of P from two fixed points 

(called foci) is a constant.   
 
If  F1  and  F2  are the foci (Fig. 40), then for every point P on the ellipse, the distance from P to  F1  PLUS 

the distance from  P to  F2  is a constant:  PF1 + PF2 = constant.  If the center of the ellipse is at the origin 

and the foci lie on the x–axis at  F1 = (c, 0)  and  F2 = (–c, 0), we can translate the words into a formula: 
 

 PF1 + PF2 = constant   becomes    (x – c)2 + y2    +    (x + c)2 + y2    =  2a .   

 (Calling the constant 2a simply makes some of the later algebra easier.) 
 
By moving the second radical to the right side of the equation, squaring each side, and simplifying, we get 
 

   (x – c)2 + y2    =  2a –    (x + c)2 + y2  
 

 (x – c)2 + y2   =  4a2 – 4a   (x + c)2 + y2    +  (x + c)2 + y2  
 

 so  x2 – 2xc + c2 + y2  =  4a2 – 4a   (x + c)2 + y2    +  x2 + 2xc + c2 + y2 

 
 and  xc + a2  =    a   (x + c)2 + y2   . 
 
Squaring each side again and simplifying, we get 
 
 (xc + a2)2  = a2 { (x + c)2 + y2 }  so  x2c2 + 2xca2 + a4  =  a2x2 + 2xca2 + a2c2  + a2y2    
 
 and  a2(a2 – c2) = x2(a2 – c2) + y2a2  . 
 

Finally, dividing each side by   a2(a2 – c2) , we get    
x2

a2   +  
y2

a2 – c2   =  1 . 

 

By setting  b2 = a2 – c2 , we have   
x2

a2   +  
y2

b2   =  1 ,  the standard form of the ellipse. 
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Hyperbola 
 

Hyperbola: A hyperbola is the set of all points P so the difference of the distances of P from the two 

fixed points (foci) is a constant. 
 
If  F1  and  F2  are the foci (Fig. 9), then for every point P on the hyperbola, the distance from  P to F1 

MINUS the distance from  P to F2  is a constant:  PF1 – PF2 = constant  (Fig. 42).  If the center of the 

hyperbola is at the origin and the foci lie on the x–axis at  F1 = (c, 0)  and  F2 = (–c, 0), we can translate the 

words into a formula: 
 

 PF1 – PF2 = constant   becomes      (x – c)2 + y2  –    (x + c)2 + y2    =  2a.  

 (Calling the constant 2a simply makes some of the later algebra easier.) 
 
The algebra which follows is very similar to that used for the ellipse. 

Moving the second radical to the right side of the equation, squaring each side, and simplifying, we get 
 

   (x – c)2 + y2    =  2a +    (x + c)2 + y2  
 

 (x – c)2 + y2   =  4a2 + 4a   (x + c)2 + y2    +  (x + c)2 + y2  
 

 so  x2 – 2xc + c2 + y2  =  4a2 + 4a   (x + c)2 + y2    +  x2 + 2xc + c2 + y2 

 
 and  xc + a2  =    –a   (x + c)2 + y2   . 
 
Squaring each side again and simplifying, we get 
 
 (xc + a2)2  = a2 { (x + c)2 + y2 }  so  x2c2 + 2xca2 + a2  =  a2x + 2xca2 + a2c2  + a2y2    
 
 and    x2(c2 – a2)  –  y2a2  =  a2(c2 – a2) . 
 

Finally, dividing each side by   a2(c2 – a2) , we get    
x2

a2   +  
y2

c2 – a2   =  1 . 

 

By setting  b2 = c2 – a2 , we have   
x2

a2   –  
y2

b2   =  1 ,  the standard form of the hyperbola. 
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Invariance Properties of the Discriminant 

 

The discriminant of  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  is  d = B2 – 4AC. 

 

The Discriminant  B2 – 4AC  is invariant under translations  (shifts): 
 

If a point  (x, y)  is shifted  h  units up  and  k  units to the right, then the coordinates of the new point are  (x' , 

y') = (x+h, y+k).  To show that the discriminant of  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  is invariant under 

translations, we need to show that the discriminant of  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 and the 

discriminant of  A(x')2 + B(x')(y') + C(y')2 + Dx' + Ey' + F = 0  are equal for  x' = x + h  and  y' = y + k. 
 

The discriminant of  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  is equal to B2 – 4AC. 

Replacing  x' with  x+h  and  y'  with y+k,   

 A(x')2 + B(x')(y') + C(y')2 + Dx' + Ey' + F  

 = A(x+h)2 + B(x+h)(y+k) + C(y+k)2 + D(x+h) + E(y+k) + F 

 = A(x2 + 2xh + h2) + B(xy + xk + yh + hk) + C(y2 + 2yk + k2) + D(x+h) + E(y+k) + F 

 = Ax2 + Bxy + Cy2 + (2Ah + Bk + D)x + (Bh + 2Ck + E)y + (Ah2 + Bhk + Ck2 + Dh + Ek + F). 

The discriminant of this final formula is  B2 – 4AC, the same as the discriminant of   

Ax2 + Bxy + Cy2 + Dx + Ey + F.  In fact, a translation does not change the values of the coefficients of 

! 

x
2
, xy, and 

! 

y
2   (the values of A, B, and C) so the discriminant is unchanged. 

 

The Discriminant  B2 – 4AC  is invariant under rotation by an angle  θ: 
 

If a point  (x, y)  is rotated about the origin by an angle of  θ, then the coordinates of the new point are   

(x' , y') = ( x.cos(θ) – y.sin(θ), x.sin(θ) + y.cos(θ) ).  To show that the discriminant of   

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  is invariant under rotations, we need to show that the discriminant of  

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 and the discriminant of  A(x')2 + B(x')(y') + C(y')2 + Dx' + Ey' + F = 0  

are equal when  x' = x.cos(θ) – y.sin(θ)  and  y' = x.sin(θ) + y.cos(θ). 
 

The discriminant of  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  is equal to B2 – 4AC. 

Replacing  x'  with  x.cos(θ) – y.sin(θ) = x.c – y.s and  y'  with  x.sin(θ) + y.cos(θ) = x.s + y.c 

 A(x')2 + B(x')(y') + C(y')2 + Dx' + Ey' + F = 0 

 = A(xc – ys)2 + B(xc – ys)(xs + yc) + C(xs + yc)2 + . . .(terms without x2 , xy , and y2 ) 

 = A(x2c2 – 2xysc + y2s2) + B(x2sc –xys2 + xyc2 –y2sc) + C(x2s2 + 2xysc + y2c2) + . . .  

 = (Ac2 + Bsc + Cs2)x2 + (–2Asc – Bs2 + Bc2 + 2Csc)xy + (As2 + Bsc + Cc2)y2 + . . . 
 

Then  A' = Ac2 + Bsc + Cs2 , B' = –2Asc – Bs2 + Bc2 + 2Csc, and  C' = As2 + Bsc + Cc2  , so the new  

discriminant is 
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 ( B' )2 – 4( A' )( C' )   

 = (–2Asc – Bs2 + Bc2 + 2Csc)2 – 4(Ac2 + Bsc + Cs2)(As2 + Bsc + Cc2) 

 = { s4(B2) + s3c(4AB – 4BC) + s2c2(4A2 –8AC – 2B2 +4C2) + sc3(–4AB + 4BC) + c4(B2) } 

  – 4{ s4(AC) + s3c(AB – BC) + s2c2(A2 – B2 + C2) + sc3(–AB + BC) + c4(AC) }   

 =  s4(B2 – 4AC) + s2c2( 2B2 – 8AC) + c4(B2 – 4AC) 

 =  (B2 – 4AC)(s4 + 2s2c2 + c4) = (B2 – 4AC)(s2 + c2)(s2 + c2) = (B2 – 4AC) , the original discriminant. 

 

The invariance of the discriminant under translation and rotation shows that any conic section can be 

translated so its "center" is at the origin and rotated so its axis is the x–axis without changing the value of 

the discriminant:  the value of the discriminant depends strictly on the shape of the curve, not on its 

location or orientation.  When the axis of the conic section is the x–axis, the standard quadratic equation  

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 

does not have an xy term  (B=0)  so we only need to investigate the reduced form 

Ax2 + Cy2 + Dx + Ey + F = 0. 

 
 
1) A = C = 0 (discriminant  d=0).  A straight line. (special case: no graph) 
 
2) A = C ≠ 0   (d<0). A circle.  (special cases: a point or no graph) 
 
3) A = 0, C ≠ 0  or  A ≠ 0, C = 0   (d=0): A parabola.  (special cases: 2 lines, 1 line, or no graph) 
 
4) A and C both positive or both negative  (d<0): An Ellipse.  (special cases: a point or no graph) 
 
5) A and C have opposite signs  (d>0): A Hyperbola. (special case:  a pair of intersecting lines) 

 

 

 

 

 

 

 


