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9.6 PROPERTIES OF THE CONIC SECTIONS 
 

This section presents some of the interesting and important properties of the conic sections that can be 

proven using calculus.  It begins with their reflection properties and considers a few ways these properties 

are used today.  Then we derive the polar coordinate form of the conic sections and use that form to 

examine one of the reasons conic sections are still extensively used:  the paths of planets, satellites, comets, 

baseballs, and even subatomic particles are often conic sections.  The section ends with a specialized 

examination of elliptical orbits.  To understand and describe the motions of the universe, at telescopic and 

microscopic levels, we need conic sections! 
 

Reflections on the Conic Sections 
 

This discussion of reflection assumes that the angle of incidence of a light ray or 

billiard ball is equal to the angle of reflection of the ray or ball.  The assumption 

is valid for light rays and mirrors (Fig. 1)  but is not completely valid for balls:  

the spin of the ball before it hits the wall may make the reflection angle smaller 

than, greater than, or equal to the incidence angle.  

 
  
 Reflection Property of an Ellipse 
 

 An elliptical mirror reflects light from one focus to the other focus  (Fig. 2)  and  

 all of the light rays take the same amount of time to be reflected to the other focus. 
    
 

Outline of a proof:  We can assume that the ellipse is oriented so its equation is 
 

 
x2

a2     +   
y2

b2     = 1   (Fig. 3)  and  a > b > 0. 

 

Then the foci are at the points  F1 = (–c, 0) and  F2 = (c, 0)  with  c = a2 – b2   .    
 

To show that the light rays from one focus 

are always reflected to the other focus, we 

need to show that angle  α, the angle between 
the ray from  F1  and the tangent line to the 

ellipse, is equal to angle  β, the angle 

between the tangent to the ellipse and the ray 
to  F2 .   
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The most direct way to show that  α = β  is to start by calculating the slopes  m1 =  slope of the line from  

F1  to  P,   m2 = the slope of the line from P to F2, and m3 = the slope of the tangent line: 
 

 m1 =  
y

x+c   ,   m2 =  
y

x–c  , and, by implicit differentiation,  m3 =  
–x
y   

b2

a2   . 

 

Then, from section 0.2, we know that  tan(α) =  
m3 – m1

1 + m1m3    and  tan(β) =  
m2 – m3

1 + m2m3    so we just need to 

evaluate  tan(α)  and  tan(β)  and show that they are equal.  Since the process is algebraically tedious and 

not very enlightening, it has been relegated to an Appendix after the problem set. 

 

Since straight paths from one focus to the ellipse and back 

to the other focus all have the same length (the definition 

of an ellipse), all of the light rays from the one focus take 

the same amount of time to reach the other focus.  If a 

small stone is dropped into an elliptical pool at one focus 

(Fig. 4), then the waves radiate in all directions, reflect off 

the sides of the pool to the other focus and create a splash 

there because they all arrive at the same time.  Similarly, if a room is in the shape of 

an (half) ellipsoid of revolution (Fig. 5), then the sound waves 

from a whisper at one focus will bounce off the walls and all 

arrive at the same time at the other focus where an 

eavesdropper can hear the conversation. 
 

Practice 1: What simple directions ensure that a ball shot  

 from anywhere on an elliptical pool table (Fig. 6) will  

  bounce off one wall and go into the single hole located at a  

  focus of the ellipse? 

 
  
 Reflection Property of a Parabola 
 

 A parabolic mirror reflects light from the focus in a line parallel to the axis of  

 the parabola  (Fig. 7).  In reverse, incoming light rays parallel to the axis are  

 reflected to the focus. 
   

Outline of a proof:  If the parabolic mirror is given by  x = ay2  (Fig. 8), then its focus 

is at  F =  ( 
1
4a  , 0)  and the parabola is symmetric with respect to the x–axis.  To prove 
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the reflection property of the parabola, we need to show that   α = β  or, 

since α and β  are both acute angles, that  tan(α) = tan(β).   

From  Fig. 8  we calculate that   
 

 m1 = 0,  m2 =  
y

x – 
1
4a

    =  
4ay

4ax – 1   =   
4ay

4a2y2 – 1
   , and, by implicit 

differentiation,  m3 =  
1

2ay   .  
 

Since  m1 = 0, we know that  tan(α) =  
m3 – m1

1 + m1m3   =  m3  =  
1

2ay    .  

 An elementary but tedious algebraic argument shows that  tan(β) =  
m2 – m3

1 + m2m3   simplifies to the same value 

as tan(α)  so  tan(α) = tan(β)  and   α = β.   

 

Because of this reflection property, the parabola is used in a 

variety of instruments and devices.  Mirrors in reflecting 

telescopes are parabolic (Fig. 9)  so that the dim incoming 

(parallel) light rays from distant stars are all reflected to an 

eyepiece at the mirror's focus for viewing.  Similarly, radio 

telescopes use a parabolic surface to collect weak signals.  A 

well known scientific supply company sells an 18 inch 

diameter parabolic reflector "ideal for a broad range of  

applications including solar furnaces, solar energy collectors,  

and parabolic and directional microphones."  For outgoing light, flashlights and automobile headlights use 

(almost) parabolic mirrors so a light source set at the focus of the mirror creates a tight beam of light (Fig. 10). 
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Not only are incoming parallel rays reflected to the same point, but 

they reach that point at the same time.  More precisely,  if two 

objects start at the same distance from the y–axis and travel parallel 

to the x–axis, they both travel the same distance to reach the focus.  

If they are traveling at the same speed, they reach the focus 

together.  An incoming linear wave front (Fig. 11)  is reflected by a 

parabolic wall to create a splash at the focus.  A small stone 

dropped into a wave tank at the focus of a parabola creates a linear outgoing wave.  This "same distance" 

property of the reflection is something you can prove. 
 

Practice 2: An object starts at the point  (p,q), travels to the left until it 

encounters the parabola  x = ay2  (Fig. 12)  and then goes straight to 

the focus at  ( 
1
4a   , 0) .  Show that the total distance traveled,  L1  

plus  L2 , equals  p + 
1
4a    so the total distance is the same for all 

values of  q.  (Assume that p > aq2  so the starting point is to the left 

of the parabola.) 

 

The hyperbola also has a reflection property, but it is less useful than those for ellipses and parabolas. 

 
  
 Reflection Property of an Hyperbola 
 
 An hyperbolic mirror reflects light aimed at one focus to the  

 other focus  (Fig. 13). 
    
 
 
Polar Coordinate Forms for the Conic Sections 
 

In the rectangular coordinate system, the graph of the general quadratic equation  

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  is always a conic section, and the value of the discriminant   

B2 – 4AC  tells us which type.  In the polar coordinate system, an even simpler function describes all  

of the conic section shapes, and a single parameter in that function tells us the shape of the graph. 
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 For  e ≥ 0, the polar coordinate graphs of   r  = 
k

1 ± e.cos(θ)
    and  r  = 

k

1 ± e.sin(θ)
       

 are conic sections with one focus at the origin. 
 
 If   e  < 1, the graph is an ellipse.  (If  e = 0, the graph is a circle.) 

 If   e  = 1, the graph is a parabola. 

 If   e  > 1, the graph is an hyperbola. 
 
 The number  e  is called the eccentricity of the conic section. 
    
 

Fig. 14 shows graphs of   r  = 
1

1 + e.cos(θ)
     for several values of  e.   

 

 

For an ellipse, the eccentricity =   
dist(center, focus)
dist(center, vertex)   (Fig. 15) .   

If the eccentricity of an ellipse is close to zero, then the ellipse is 

"almost" a circle.  If the eccentricity of an ellipse is close to 1, the 

ellipse is rather "narrow."   
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For a hyperbola, the eccentricity =   
dist(center, focus)
dist(center, vertex)   (Fig. 16) .  

If the eccentricity of a hyperbola is close to 1, then the hyperbola  is 

"narrow."  If the eccentricity of a hyperbola is very large, the 

hyperbola "opens wide."   
 

Proof: The proof uses a strategy common in mathematics:  move 

the problem into a system we know more about.  In this case we 

move the problem from the polar coordinate system to the 

rectangular coordinate system, put the resulting equation into the  

form of a general quadratic equation, and then use the discriminant to determine the shape of the graph. 
 

If  r  = 
k

1 + e.cos(θ)
    , then  r + e.r.cos(θ) = k.  Replacing  r  with  x2 + y2   and  r.cos(θ)  with  x, we get  

x2 + y2   +  e.x =  k  and    x2 + y2    = k –  e.x . 
 

Squaring each side and collecting all of the terms on the right gives the equivalent general quadratic 

equation   
 
 (1 – e2)x2 + y2 + 2kex – k = 0  so  A = 1 – e2 , B = 0, and  C = 1. 
 
The discriminant of this general quadratic equation is  B2 – 4AC = 0 – 4(1 – e2)(1) = 4(e2  – 1) so 
 
 if   e  < 1, then  B2 – 4AC < 0  and the graph is an ellipse, 

 if   e  = 1, then  B2 – 4AC = 0  and the graph is an parabola,  and 

 if   e  > 1, then  B2 – 4AC > 0  and the graph is an hyperbola. 
 

The graph of  r  = 
k

1 + e.cos(θ)
       is a conic section, and the value of the eccentricity tells which shape the 

graph has.  We will not prove that one focus of the conic section is at the origin, but it's true. 
 
 

Practice 3: Graph   r  = 
k

1 + (0.8).cos(θ)
    for  k = 0.5, 1, 2, and 3.  What effect does the value of  k   

 
 have on the graph? 
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Subtracting a constant  α  from  θ  rotates a polar coordinate graph counterclockwise about the origin by an 

angle of α , but does not change the shape of the graph, so the graphs of   
 

r  = 
k

1 + e.cos(θ – α)
      are all conic sections whose shapes depend on the size of the parameter  e.   

 

In particular,  the polar  graphs of   r  = 
1

1 – e.cos(θ)
    ,  r  = 

1

1 + e.sin(θ)
    ,  and  r  = 

1

1 – e.sin(θ)
      

 

are conic sections, rotations about the origin of the graphs of  r  = 
1

1 + e.cos(θ)
    ,   since   

–cos(θ) = cos(θ – π), sin(θ) = cos(θ – π/2), and  –sin(θ) = cos(θ – –π/2).  Fig. 17 shows several of these 

graphs for  e = 0.8 . 

The Path of Every Object in the Universe is a Conic Section  (not really) 
 

Rather than engage in endless philosophical discussion about how the planets ought to move, Tycho Brahe 

(1546–1601)  had a better idea about how to find out how they actually do move –– collect data!  Even 

before the invention of the telescope, he built an observatory, and with the aid of devices like protractors he 

carefully cataloged the positions of the planets for 20 years.  Just before his death, he passed this 

accumulated data to Johannes Kepler to edit and publish.  From these remarkable data, Kepler deduced his 

three laws of planetary motion, the first of which says each planet 

moves in an elliptical orbit with the sun at one focus  (Fig. 18).  

From Kepler's laws, Newton was able to deduce that a force, gravity, 

held the planets in orbits and that the force varied inversely as the 

square of the distance between the planet and the sun.  From this 

“inverse square” fact it can be shown that the position of one object 

(e.g., a planet) with respect to another (e.g., the sun) is given by the 

polar coordinate formula 
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 r =  
h

1 + (h–1).cos(θ)
          where    h =   

ro.vo
2

GM       

  ro  = initial distance (m),  vo = initial velocity (m/s) 

  G = universal gravition constant  ( 6.7x10–11  
N m2

kg2    ) 

  M = mass of the sun  or "other object"  (kg) . 
 
You should recognize the pattern of this formula as the pattern for the conic sections with eccentricity   
 

 e = | h – 1 | =  |  ro
.vo

2

GM    – 1 |. 
 

In a "two body" universe, all motion paths are conic sections, and the shape of the conic section is 
determined by the value of  ro.vo

2.  If the object is far away or moving very rapidly or both, then   

ro.vo
2 > 2GM, the eccentricity is greater than one, and the path is a hyperbola.  If the objects are relatively 

close and/or moving slowly,  then  ro.vo
2 < 2GM  (the situation with each planet and the sun), the 

eccentricity is less than one and the path is an ellipse.  If  
ro.vo

2 = 2GM, then the eccentricity is 1 and the path is a 

parabola.  If  ro.vo
2 = GM, then the eccentricity is 0 and 

the path is a circle.  It is rare to encounter values of  ro  

and  vo  so  ro.vo
2  exactly equals  GM  or  2GM. 

 

The universe obviously contains more than two bodies and the paths of most objects are not conic sections, 

but there are still important situations in which the force on an object is due almost entirely to the 

gravitational attraction between it and one other body.  For example, scientists and engineers use the 

position formula to determine the orbital position and velocity needed to put a satellite into an orbit with 

the desired eccentricity, and the position formula was used to help calculate how close Voyager 2  should 

come to Jupiter and Saturn so the gravity of those planets could be used to change the path of Voyager 2 to 

a hyperbola and send it on to other planets  (Fig. 19).  The conic sections even appear at less grand scales.  

In a vacuum, the path of a thrown baseball (or bat) is a parabola, unless it is 

thrown hard enough to achieve an elliptical orbit.  And at the subatomic scale, 

Rutherford (1871 – 1937) discovered that alpha particles shot toward the 

nucleus of an atom are repelled away from the nucleus along hyperbolic paths  

(Fig. 20).  Conic sections are everywhere. 
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Elliptical Orbits  
 

When a planet orbits a sun, the orbit is an ellipse, and we can use information about ellipses to calculate 

information about these orbits.  
 
The position of a planet in elliptical orbit around a sun is given by the polar equation 
 

 r  = 
k

1 + e.cos(θ)
     

 

for some value of the eccentricity  e < 1  (Fig. 21).  The 

planet is closest (at perhelion) to the sun when   
 

θ = 0 and this minimum distance is  rmin = 
k

1 + e   .  
The greatest distance (at aphelion) occurs when   
 

θ = π  and that distance is  rmax  = 
k

1 – e   .  If the width 

of the ellipse (technically, the length of the major axis)  is 2a, then   
 

 2a = rmin + rmax   =   
k

1 + e   +   
k

1 – e    =  
2k

1 – e2   

 

so  k = a(1 – e2)  and the position of the planet is given by   
 

 r  = 
a(1 – e2)

1 + e.cos(θ)
    with  rmin  =   

a(1 – e2)
1 + e    =  a(1 – e)  and  rmax  =   

a(1 – e2)
1 – e     =  a(1 + e). 

 

Example 4: We want to put a satellite in an elliptical orbit around the earth  (radius ≈ 6360 km) so the 

maximum height of the satellite is  20,000 km and the minimum height is 10,000 km  (Fig. 22).  Find 

the eccentricity of the orbit and give a polar formula for its position. 
 
Solution: rmax  = maximum height plus the radius of the  earth = 26,360 km  and  rmin  = minimum  

height plus the radius of the earth = 16,360 km so  a(1 + e) = 26,360  and  

a(1 – e) = 16,360.  Dividing these last two quantities, we have 
 

  
 rmax 
 rmin    =  

26360
16360   =  

a(1 + e)
a(1 – e)   =  

1 + e
1 – e    and  e = 

10000
42720   ≈  0.234 

.   
 
 Using  rmin  = a(1 – e) =  a(1 – 0.234) = 16360  we have    a ≈  21358.   
  

 Finally,   r  = 
a(1 – e2)

1 + e.cos(θ)
    =   

20189
1 + (0.234).cos(θ)

    . 
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Practice 4: Pluto's orbit has an eccentricity of 0.2481 and its semimajor axis is 5,909 million 

kilometers.  Find the minimum and maximum distance of Pluto from the sun during one orbit.  The 

orbit of Neptune has an eccentricity of  0.0082 with a semimajor axis of  4,500 million kilometers.  Is 

Neptune ever farther from the sun than Pluto? 
 
 
PROBLEMS 
 
Reflection properties 
 

1. For the ellipse in Fig. 23, how far does a ball travel as it moves from 

one focus to any point on the ellipse and on to the other focus? 
 

 

2. In Fig. 24 a ball rolls from point  P  over the the focus at  A  and keeps  

 rolling.  Sketch the path of the ball for the first 5 bounces it makes off of the  

 ellipse.  What does the path of the ball look like after "a long time?" 

 
 
 

 
 

3. In Fig. 25 a ball rolls from point  P  toward the the focus at  A  

and bounces off of the hyperbola.  Sketch the path of the ball for 

the first 5 bounces it makes off of the hyperbola.  What does the 

path of the ball look like after "a long time?" 
 
 

4. An explosion is set off at one focus inside a very strong 

ellipsoidal shell.  What might happen to a piece of graphite located at the other focus? 
 

5. A straight wave front is approaching a parabolic jetty.  Why wouldn't you want your boat to be at the 

focus of the parabola? 
 

6. The members of a marching band are grouped near point A (Fig. 26), 

the focus of a parabola.  At a signal from the director, the band 

members each march (at the same speed) in different directions 

toward the parabola, immediately turn and then march due west.  

What shape will the formation have after all of the marchers have 

made their turns? 
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7. A reflecting telescope is built with a parabolic mirror and a  
 hyperbolic mirror (Fig. 27)  so  F1  is the focus of the parabola 

and  F1  and  F2  are the foci of the hyperbola.  Trace the paths 

of the incoming parallel light rays  a, b, and c as they reflect off 
both mirrors.  Why is the eyepiece located at F2 ? 

 
8. Make a slight design change in the telescope in Fig. 27 so  

 the eyepiece can be located at the point off to the side of the 

parabolic mirror. 
 

9. The billiards table in Fig. 28 consists of parts of two  
 parabolas:  the right parabola has focus F1  and the left  

 parabola has focus F2 .  (a)  Determine a strategy for  

 shooting the balls located at A and B to make a two–cushion  
 (i.e., two bounce) shot into the hole located at F2 .  (b)  Are  

 there any places on the table where your strategy in part (a)  

 does not work?  (Unfortunately for my ability to win at 

billiards, the angle of incidence does not necessarily equal the angle of 

reflection.  But assume they are equal for these problems.) 

 

10. The billiards table in Fig. 29 consists of parts of two ellipses:  the short 
ellipse has foci F1  and F2 and the tall ellipse has foci F2  and F3 .   

   (a)  Determine a strategy for shooting the balls located at A and B to 
make a two–cushion (i.e., two bounce) shot into the hole located at F3 .  

(b)  Are there any places on the table where your strategy in part (a) 

does not work? 
 

11. Use Fig. 30 to help explain geometrically  

 why a ball located on the major axis of an  

 ellipse between the two foci is always  

 reflected back to a point on the major axis  

 between the two foci. 
 
 
 

12. Is a rectangular reflection path (Fig. 31)  possible for the ellipse  
 

 (a)   
x2

25   +  
y2

16  = 1?  (b)   
x2

a2   +  
y2

b2  = 1?   
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Polar forms 
 

In problems 13–18, determine the eccentricity of each conic section, identify the shape, and determine 

where it crosses the  x  and  y  axes. 
 

13. r  = 
11

3 + 5.cos(θ)
   14. r  = 

8

7 + 3.sin(θ + π/6)
    15. r  = 

1

2 + 2.sin(θ – π/3)
     

 

16. r  = 
–4

3 – 3.cos(θ)
       17. r  = 

17

7 – 5.cos(θ + 3π)
     18. r  = 

3

4 – 2.sin(θ + π/11)
     

 

In problems 19–24, sketch each ellipse and determine the coordinates of the foci.  (Reminder: In the 

standard polar coordinate form used here, one focus is always at the origin.) 
 

19. r  = 
6

2 + cos(θ)       20. r  = 
6

2 + sin(θ)     21. r  = 
12

3 – sin(θ)     
 

22. r  = 
12

3 – cos(θ)       23. r  = 
3

2 + sin(θ – π/4)     24. r  = 
3

2 + cos(θ + π/4)   
 

In problems 25 and 26, represent the length and area of each ellipse as definite integrals and use Simpson's 

rule with  n = 100 to approximate the values of the integrals.   
 

25.  r  = 
1

1 + 0.5.cos(θ)
    26.  r  = 

1

1 + 0.9.cos(θ)
    

 
 
Conic section paths: 
 

Problems 27–30 refer to the two objects in Fig. 32.  Determine the shape of the path of object B.  (Object  

A  has mass  1019 kg,  r =  105 m  ) 
 
27. v =  17.6 m/s 28. v = 115  m/s  
 
29. v = 120  m/s 
 
30. Determine a velocity for  B  so that the path is a parabola. 
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31. An object at a distance  r  from the center of a planet 

of mass M  (Fig. 33) has velocity  v.  Determine 

conditions on  v  as a function of  r, M, and  G so the 

resulting path is (a) circular,  

 (b) elliptical, (c) parabolic, and  

 (d) hyperbolic. 
 
 

Problems 32–34 refer to Earth and moon orbits: use   
 G = 6.7x10–11 N.m2/kg2,  
 MEarth = 5.98x1024 kg,   

 rEarth = 6.360x106 m,  

 Mmoon = 7x1022 kg  , and   

 rmoon = 1.738x106 . 
 

32. At the Earth's surface, determine a velocity so that the resulting path is circular.  This is the minimum 

velocity needed to achieve "orbit," a very low orbit. 

 
33. At the Earth's surface, determine a velocity so that the resulting path is parabolic.  This is the  

 minimum velocity needed to escape from orbit, and is called the "escape velocity". 
 
34. At the moon's surface, determine the minimum orbital velocity and the (minimum) escape velocity. 
 

Elliptical orbits  
 

35. We want to put a satellite into orbit around Earth so the maximum altitude of the satellite is 1000 km 

and the minimum altitude is 800 km.  Find the eccentricity of this orbit and give a polar coordinate 

formula for its position. 
 

36. The Earth follows an elliptical orbit around the sun, and this ellipse has a semimajor axis of 149.6x106 

km and an eccentricity of 0.017.  (a)  Determine the maximum and minimum distances of the Earth 

from the sun.  (b)  How far apart are the two foci of this ellipse? 
 

37. Determine the altitude needed for an Earth satellite to make one orbit on a circular path every 24 hours 

("geosyncronous").  (Since the orbit is circular and the satellite makes one orbit every 24 hours, you 

can determine the velocity  v  (in  m/s) as a function of the distance  r  from the center of the Earth.  

Since the orbit is circular,  e = 0  and  r.v2 = GM.) 
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Section 9.6 PRACTICE  Answers 
 

Practice 1: "Shoot the ball toward the left focus."  Since the table is an ellipse, the ball will roll over the 

focus, hit the wall, and be reflected into the hole at the other focus. 
 
Practice 2: L1 = distance from  (p, q)  to  (a.q2, q)  =  p – a.q2. 

 L2 = distance from  (a.q2, q)  to  ( 
1
4a  , 0)   

  =    (a.q2 –  
1
4a )2  +  (q – 0)2      =   a2q4 – 2aq2( 

1
4a ) + 

1
16a2  +  q2  

 

  =   a2q4  – 
1
2 q2 +  

1
16a2  +  q2  

 

  =   a2q4  + 
1
2 q2 +  

1
16a2    =    (aq2 +  

1
4a )2   =  aq2 +  

1
4a   . 

 

 Therefore,  L1 + L2 = ( p – a.q2 ) + ( aq2 +  
1
4a   )  =  p + 

1
4a   . 

 
 

Practice 3: The graphs of  r = 
k

 1 + (0.8).cos(θ)
    

 for  k = 0.5, 1, and 2  are shown in Fig. 34. 

 Each graph is an ellipse with eccentricity 0.8 and one 

focus at the origin.  The value of  k  determines the 

size of the ellipse.  The larger the magnitude of  k, the 

larger the ellipse. 
 
 
 

Practice 4: For Pluto:  e = 0.2481  and semimajor axis length = 5,909 km  ( a = 5,909 km). 
  rmin = a( 1 – e ) = 5909( 0.7519 ) ≈ 4443 km.   

  rmax = a( 1 + e ) = 5909( 1.2481 ) ≈ 7375 km. 

 For Neptune:  e = 0.0082  and  a = 4,500 km. 
  rmin = a( 1 – e ) = 4500( 0.9918 ) ≈ 4463 km, a distance closer than Pluto at its closest! 

  rmax = a( 1 + e ) = 4500( 1.0082 ) ≈ 4537 km. 

 In fact, Neptune is the farthest planet from the sun between January 1979  and  March 1999.  Now 

that Pluto has been reclassified as a “dwarf plane,” Neptune is always the farthest planet from the 

sun.  Poor Pluto. 
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Appendix:  Reflection Property of the Ellipse 
 

Let P = (x,y) be on the ellipse   
x2

a2     +   
y2

b2     = 1 with foci at (–c, 0)  and  (c, 0)  for  c = a2 – b2  . 

 

Then the slopes (Fig. 40) are  m1 = slope from P to (–c,0)  =  
y

x+c   ,  m2 = slope from P to (c,0)  =  
y

x–c   , 
 

and  m3 =  slope of tangent line to ellipse at  (x,y)  =  
–x
y   

b2

a2    (by implicit differentiation ) .    

 

We know that  tan(α) =  
m3 – m1

1 + m1m3   and  tan(β) =  
m2 – m3

1 + m2m3   ,  and we want to show that   α = β  or, 

equivalently, that   tan(α) = tan(β). 
 

tan(α) =  
m3 – m1

1 + m1m3  = 
 
–x
y   

b2

a2 –  
y

x+c 

1 +  
y

x+c 
–x
y   

b2

a2

       multiply top & bottom by  ya2(x+c) 

 

 = 
 –xb2(x+c) – y2a2

ya2(x+c) – xyb2     =  
–x2b2 – xb2c – y2a2

xya2 + ya2c – xyb2      

 
  

 = 
–xb2c –  (x2b2 + y2a2)

xy(a2 – b2) + ya2c
  x2b2 + y2a2 =  a2b2   and  a2 – b2  =  c2    

 

 = 
–xb2c –  a2b2

xyc2 + ya2c
     = 

–b2
yc   

xc + a2

xc + a2  =  
–b2
yc    . 

 
 

Similarly,    tan(β) =  
m2 – m3

1 + m2m3   = 
 

y
x–c –  

–x
y   

b2

a2 

1 +  
y

x–c 
–x
y   

b2

a2

      multiply top & bottom by  ya2(x–c) 

 

 = 
 y2a2 + xb2(x–c)
ya2(x–c) – xyb2     =  

x2b2 – xb2c + y2a2

xya2 – ya2c – xyb2     

 

 = 
–xb2c +  (x2b2 + y2a2)

xy(a2 – b2) – ya2c
   ( x2b2 + y2a2 =  a2b2   and  a2 – b2  =  c2 )   

 

 = 
–xb2c +  a2b2

xyc2 – ya2c
     = 

–b2
yc   

xc – a2

xc – a2  =  
–b2
yc   =   tan(α).   (Yes!) 



9.6 Properties of the Conic Sections Contemporary Calculus 16 

Reflection Property of the Parabola  x = ay2  with focus  ( 
1
4a  , 0) 

 
The slopes of the line segments in  Fig. 41  are  m1 = slope of "incoming" ray  = 0,   
 

m2 = slope from  P to focus =  
y

x – 
1
4a

    =  
4ay

4ax – 1   =   
4ay

4a2y2 – 1
   , and, by implicit differentiation, 

 

m3 = slope of the tangent line at (x,y)  =  
1

2ay   . 
 

We know that tan(α) =  
m3 – m1

1 + m1m3  and  tan(β) =  
m2 – m3

1 + m2m3   , and we want to show that  α = β  

or, equivalently, that   tan(α) = tan(β). 
 

tan(α) =  
m3 – m1

1 + m1m3  =  m3  =  
1

2ay   

 

tan(β)   =  
m2 – m3

1 + m2m3   =  

4ay
4a2y2 – 1

 – 
1

2ay

1 +  
4ay

4a2y2 – 1
 

1
2ay

       multiply top & bottom by  (4a2y2 – 1)(2ay) 

 

 = 
8a2y2 – 4a2y2 + 1

(4a2y2 – 1)(2ay) + 4ay
     =  

4a2y2 + 1
8a3y3 – 2ay + 4ay

    

 

 = 
4a2y2 + 1

8a3y3 + 2ay
  =  

4a2y2 + 1
2ay(4a2y2 + 1)

  =  
1

2ay    =  tan(α) .   (Yes!) 

 
There are other, more geometric ways to prove this result. 
 
 
 


