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4.7 FIRST APPLICATIONS OF DEFINITE INTEGRALS   
 
The development of calculus by Newton and Leibniz was a vital step in the advancement of pure mathematics,  

but Newton also advanced the applied sciences and mathematics.  Not only did he discover theoretical results, 

but he immediately used those results to answer important applied questions about gravity and motion.  The 

success of these applications of mathematics to the physical sciences helped establish what we now take for 

granted: mathematics can and should be used to answer questions about the world.  
 

Newton applied mathematics to the outstanding problems of his day, problems primarily in the field of 

physics.  In the intervening 300 years, thousands of people have continued these theoretical and applied 

traditions and have used mathematics to help develop our understanding of all of the physical and biological 

sciences as well as the behavioral sciences and business.  Mathematics is still used to answer new questions in 

physics and engineering, but it is also important for modeling ecological processes, for understanding the 

behavior of DNA, for determining how the brain works, and even for devising strategies for voting effectively.  

The mathematics you are learning now can help you become part of this tradition, and you might even use it to 

add to our understanding of different areas of life.   
 

It is important to understand the successful applications of integration in case you need to use those particular 

applications.  It is also important that you understand the process of building models with integrals so you can 

apply it to new problems.  Conceptually, converting an applied problem to a Riemann sum (Fig. 1)  is the most 

valuable step.  Typically, it is also the most difficult. 
 

Area between  f  and  g 
 

We have already used integrals to find the area between the graph of a function and the horizontal axis.  

Integrals can also be used to find the area between two graphs. 

If  f(x) ≥ g(x) for all  x  in  [a,b], then we can approximate the area 

between  f  and  g  by partitioning the interval  [a,b]  and forming a 

Riemann sum  (Fig. 2).  The height of each rectangle is   
f(ci) – g(ci)  so the area of the ith rectangle is   

(height).(base) = {f(ci) – g(ci)}.∆xi .  This approximation  

of the total area is  

 area  ≈  ∑
i=1

n
 {f(ci) – g(ci)}.∆xi  ,   a Riemann sum.   
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The limit of this Riemann sum, as the mesh of the partitions approaches 0, is the definite integral   

  ⌡⌠

a

b
 { f(x) – g(x) } dx  . 

We will sometimes use an arrow to indicate "the limit of the Riemann sum as the mesh of the partitions 

approaches zero," and will write 
 

  ∑
i=1

n
 {f(ci) – g(ci)}.∆xi   →

  ⌡⌠

a

b
 { f(x) – g(x) } dx  .  

 
  
 If f(x) ≥ g(x)  on the interval  [a,b], 
 

 then 






 area bounded by the graphs

 of f and g and vertical
 lines at  x = a  and  x = b

   =  ⌡⌠

a

b
 { f(x) – g(x) } dx  . 

   
 
Example 1: Find the area bounded between the graphs of  f(x) = x  and  g(x) = 3  for  1 ≤ x ≤ 4.  (Fig. 3) 
 
Solution: It is clear from the figure that the area between  f  and  g  is 2.5 square inches.  Using the theorem, 

 area between f  and g for  1 ≤ x ≤ 3  is   
 

  ⌡⌠

1

3
 { 3 – x } dx  = 3x  – 

x 2
2    |

3

1
   = ( 

9
2  ) – ( 

5
2  )  = 2 , and 

 area between f  and g for  3 ≤ x ≤ 4  is   
 

  ⌡⌠

3

4
 { x  – 3 } dx  = 

x 2
2   – 3x  |

4

3
   = ( 

–8
2   ) – ( 

–9
2   )  = 

1
2    . 

 The two integrals also tell us that the total area between  f  and  g  is  2.5  

square inches. 

 The single integral  ⌡⌠

1

4
 { 3 – x  } dx  = 1.5  which is not the area we want in this problem.  The value 

of the integral is 1.5, and the value of the area is 2.5 . 
 

Practice 1: Use integrals and the graphs of  f(x) = 1 + x  and  g(x) = 3 – x    

 to determine the area between the graphs of  f  and  g  for  0 ≤ x ≤ 3. 

Example 2: Two objects start from the same location and travel along the same  
 path with velocities  vA(t) = t + 3  and   

 vB(t) = t2 – 4t + 3  meters per second  (Fig. 4).   

 How far ahead is  A  after 3 seconds?  After 5 seconds? 
Solution:  Since  vA(t) ≥ vB(t) , the "area" between the graphs of  vA  and  vB  represents the distance 

between the objects. 
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After 3 seconds, the distance apart = ⌡⌠

0

3
 vA(t) – vb(t) dt  = ⌡⌠

0

3
 (t+3) – ( t2–4t+3) dt  

 = ⌡⌠

0

3
 5t – t2 dt  = 

5
2  t2 – 

t3
3    |

3

0
   =  ( 

5
2  .9 – 

27
3   ) – ( 

5
2  .0 – 

0
3  ) = 13 

1
2   meters. 

After 5 seconds, the distance apart = ⌡⌠

0

5
 vA(t) – vb(t) dt   =  

5
2  t2 – 

t3
3    |

5

0
   =  20 

5
6   meters. 

 

If  f(x) ≥ g(x) , we can use the simpler argument that the area of region A  is  ⌡⌠

a

b
 f(x) dx   and the area of  

region B  is  ⌡⌠

a

b
 g(x)  dx ,  so the area of region C, the area between  f  and  g , is   

 area of C = (area of A) – (area of B) =  ⌡⌠

a

b
 f(x) dx   – ⌡⌠

a

b
 g(x) dx  =  ⌡⌠

a

b
 f(x) – g(x) dx .  

 

If the same function is not always greater, then we need to be very careful and find the intervals where  

f ≥ g and the intervals where  g ≥ f. 
 
 
Example 3: Find the area of the shaded region in Fig. 5. 
 

Solution: For  0≤ x ≤5, f(x) ≥ g(x)  so the area of A is   
 

⌡⌠

0

5
 f(x) – g(x) dx  = ⌡⌠

0

5
 (x+3) – (x2–4x+3) dx    

 

 = ⌡⌠

0

5
 5x–x2  dx  =  

5
2  x2 – 

x3
3    |

5

0
  = 20 

5
6   . 

For  5≤ x ≤ 7, g(x) ≥ f(x)  so the area of B is 
 

 ⌡⌠

5

7
 g(x) – f(x)dx  = ⌡⌠

5

7
 (x2–4x+3) – (x+3) dx   = ⌡⌠

5

7
 x2  – 5x  dx  =  

x3
3    – 

5
2  x2 |

7

5
  = 12 

4
6   . 

Altogether, the total area between  f and g  for  0≤ x ≤ 7  is   
 

 ⌡⌠

0

5
 f(x) – g(x) dx  + ⌡⌠

5

7
 g(x) – f(x) dx   =  20 

5
6    + 12 

4
6     = 33 

1
2   . 
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Average Value of a Function 
 

We know the average of n numbers, a1, a2, . . . , an , is their sum divided by n:  average (mean) =  
1
n  ∑

k=1

n
 ak .  

Finding the average of a function on an interval, an infinite number of values, requires an integral. 
 

To find a Riemann sum approximation of the average value of  f  on the interval  [a,b], we can partition  
[a,b]  into  n  equally long subintervals of length  ∆x = (b–a)/n, pick a value  ci  of  x  in each subinterval, 

and find the average of the numbers  f(ci).  Then 

 average of  f  ≈  
f(c1)+f(c2)+. . . +f(cn)

n     =  
1
n  ∑

k=1

n
 f(ci)   =   ∑

k=1

n
 f(ci) . 

1
n       

This last sum is not a Riemann sum since it does not have the form ∑ f(ci).∆xi , but it can be manipulated 

into one:  

    ∑
i=1

n
 f(ci) . 

1
n      =     ∑

i=1

n
 f(ci) . 

b–a
n   .  

1
b–a     =  

1
b–a   ∑

i=1

n
 f(ci) . 

b–a
n      =  

1
b–a   ∑

i=1

n
 f(ci) . ∆x. 

 

Then  {average of  f}  ≈   
1

b–a   ∑
k=1

n
 f(ci) . ∆x   →  

  
1

b–a  ⌡⌠

a

b
 f(x) dx  =  {average of f}   

 
as the number of points  n  gets larger and the mesh , (b–a)/n ,  approaches 0. 

 
  Definition:  Average (Mean) Value of a Function 
 
  For an integrable function  f  on the interval  [a,b], 
 

  the average value of  f  on  [a,b]  is    
1

b–a ⌡⌠

a

b
 f(x) dx  

    

The average value of a positive  f  has a nice geometric interpretation.  Imagine that the area under  f  (Fig. 

6a)  is a liquid that can "leak" through the graph to form a rectangle with the same area  (Fig. 6b).  If the 

height of the rectangle is  H, then the area of the rectangle is  H.(b–a).  We know the area of the rectangle is 

the same as the area under  f  so 
 

 H.(b–a) =  ⌡⌠

a

b
 f(x) dx  .  Then    

 H =  
1

b–a   ⌡⌠

a

b
 f(x) dx , the average value of  f  on  [a,b]. 

The average value of positive  f  is the height  H  of the 

rectangle whose area is the same as the area under  f. 

 



4.7 Applications of Integration Contemporary Calculus 5 

 

Example 4: Find the average value of  f(x) = sin(x)  on the  

 interval  [0,π] .  (Fig. 7) 
 

Solution: Average value =   
1
π–0  ⌡⌠

0

π
 sin(x) dx   

  = 
1
π ( – cos(x))  |

π

0
   = 

1
π  { –(–1) – (–1) }  =  

2
π   ≈  0.6366  .  

A rectangle with height  2/π ≈ 0.64  on the interval [0,π]  encloses the same area as  one arch of the 

sine curve.  The average value of  sin(x)  on the interval  [0, 2π]  is  0  since    
1

2π ⌡⌠

0

2π
 sin(x)dx   = 0. 

 

Practice 2: During a 9 hour work day, the production rate at time  t  hours was  r(t)= 5 + t    cars  

 per hour.  Find the average hourly production rate. 
 
Function averages, involving means and more complicated averages, are used to "smooth" data so that  

underlying patterns are more obvious and to remove high frequency "noise" from signals.  In these 

situations, the original function  f  is replaced by some "average of  f."  If  f  is rather jagged time data, then 

the ten year average of  f  is  the integral   g(x) =  
1
10 ⌡⌠

x–5

x+5
 f(t) dt   .an average of  f  over  5 units on each side 

of  x.   For example, Fig. 9  shows the graphs of a 

Monthly Average (rather “noisy” data) of surface 

temperature data, an Annual Average (still rather 

“jagged), and a Five Year Average (a much 

smoother function).  Typically the average function 

reveals the pattern much more clearly than the 

original data.  This use of a “moving average” 

value of “noisy” data (weather information, stock 

prices) is a very common. 
 
Work 

The amount of work done on an object is the force 

applied to the object times the distance the object is moved while the force is applied  (Fig. 10) or, more 

succinctly,   work = (force).(distance) .   

If you lift a 3 pound book 2 feet, then the force is 3 pounds, the weight of the book, 

and the distance moved is  2  feet, so you have done  (3 pounds).(2 feet) = 6 foot–

pounds of work.  When the applied force and the distance are both constants, then 

calculating work is simply a matter of multiplying.   
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Practice 3: How much work is done lifting a 10 pound object from the ground to the top of a 30 foot 

building (assume the cable is weightless). 
 

If either the force or the distance is variable, then integration is needed. 
 

Example 5: How much work is done lifting a 10 pound object from the ground to the top of a 30 foot  

 building if the cable weighs 2 pounds per foot.  (Fig. 11) 

Solution:  This is more difficult than the Practice problem.  When the object is at 

ground level, a force of 70 pounds (10 pounds plus the weight of 30 feet of cable)  

must be applied, but when the object is 29 feet above the ground, 

only 12 pounds of force are needed.  In general, if the object is   

x  feet above the ground (Fig. 12), then 30 – x  feet of cable, 

weighing  2(30–x) pounds, is used so the required force is   
 
  f(x) = 10 + 2(30–x) = 70 – 2x  pounds. 
 

Let's partition the height of the building into small increments so the force needed  

in each subinterval does not change much.  The force in the  ith  subinterval will be 
approximately   f(ci)  for some  ci  in the subinterval, and the distance moved will be 

the length of the subinterval, ∆xi .  The work done to move the object through the 

subinterval will be  f(ci).∆xi ,  and the total work will be the sum of the work on each subinterval: 
 
 work  ≈ ∑ (subinterval work)   = ∑ f(ci) ∆xi  = ∑ {70 – 2ci} ∆xi       (a Riemann sum)  

 

  →  
 ⌡⌠

0

30
 {70 – 2x } dx     as the mesh approaches 0. 

 

We have approximated the solution to an applied problem by a Riemann sum, and obtained an exact 

solution by taking the limit of the Riemann sum to get a definite integral.  Now we just need to evaluate 

the definite integral: 
 

⌡⌠

0

30
(70 – 2x) dx  = 70x – x2 |

30

0  = {70.30 – (30)2} – {70.0 – (0)2} = (2100–900) – (0) = 1200  foot–pounds. 

 
Practice 4: Suppose the building in Example 5 is 50 feet tall and the cable weighs 3 pounds per foot. 

(a) How much force is needed when the 10 pound object is  x  feet above the ground? 

(b) Write an integral for the work done raising the object from the ground to a height of 10  

feet.  From a height of 10 feet to a height of 20 feet. 
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In the previous Example and Practice problem, the force was variable and the distance was  ∆x.  In later 

sections we will examine situations where the force is constant and the distance changes. 
 

Summary 
 

These area, average and work applications simply introduce a few of the applications of definite integrals 

and illustrate the pattern of going from an applied problem to a Riemann sum, on to a definite integral and, 

finally, to a number.  More applications will be explored in Chapter 5.  The rest of this chapter will 

examine additional ways of finding antiderivatives and of finding the values of definite integrals when an 

antiderivative can not be found. 

 

PROBLEMS 
 
In problems  1 – 4, use the values in  Table 1  to estimate the areas. 
 

1. Estimate the area between  f  and  g  for  1 ≤ x ≤ 4. 
 

2. Estimate the area between  f  and  g  for  1 ≤ x ≤ 6. 
 

3. Estimate the area between  f  and  h  for  0 ≤ x ≤ 4. 
 

4. Estimate the area between  g  and  h  for  0 ≤ x ≤ 6. 
 
5. Estimate the area of the island in Fig. 13. 
 
6. Estimate the area of the island in Fig. 13  if the distances  

 between the lines is 50 feet instead of 40 feet,. 
 

In problems 7 – 18, sketch the graph of each function and find 

the area between the graphs of  f  and  g  for  x  in the given 

interval. 
 
7. f(x) = x2 + 3 ,  g(x) = 1   and  –1 ≤ x ≤ 2.  
 
8. f(x) = x2 + 3 ,  g(x) = 1 + x   and  0 ≤ x ≤ 3. 
 
9. f(x) = x2 ,  g(x) = x   and  0 ≤ x ≤ 2. 10. f(x) = 4 – x 2 ,  g(x) = x  + 2 and  0 ≤ x ≤ 2. 
 

11. f(x) = 
1
x   ,  g(x) = x   and  1 ≤ x ≤ e. 12. f(x) = x   ,  g(x) = x   and  0 ≤ x ≤ 4. 

 
13. f(x) =  x + 1 ,  g(x) = cos(x )  and  0 ≤ x ≤ π/4. 14. f(x) = (x –1)2 ,  g(x) = x  + 1  and  0 ≤ x ≤ 3. 
 

15. f(x) = ex ,  g(x) = x   and  0 ≤ x ≤ 2. 16. f(x) = cos(x ),  g(x) = sin(x )  and  0 ≤ x ≤ π/4. 
 

x!   f(x)!   g(x)!  h(x)""

0!     5!      2!      5

1!     6!      1!      6

2!     6!      2!      8

3!     4!      2!      6

4!     3!      3!      5

5!     2!      4!      4

6!     2!      5!      2

Table 1
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17. f(x) = 3 ,  g(x) = 1 – x2     and  0 ≤ x ≤ 1. 18. f(x) = 2 ,  g(x) = 4 – x2     and  –2 ≤ x ≤ 2. 
 
In problems  19 – 22, use the values in  Table 1  to estimate the average values. 
 
19. Estimate the average value of  f  on the interval [0.5, 4.5]. 
 
20. Estimate the average value of  f  on the interval [0.5, 6.5]. 
 
21. Estimate the average value of  f  on the interval [1.5, 3.5]. 
 
22. Estimate the average value of  f  on the interval [3.5, 6.5]. 
 

In problems 23 – 32, find the average value of  f  on the given interval. 
 
23. f(x)  in Fig. 14  for  0 ≤ x ≤ 2. 24. f(x)  in Fig. 14   for  0 ≤ x ≤ 4. 
 
25. f(x)  in Fig. 14  for  1 ≤ x ≤ 6. 26. f(x)  in Fig. 14   for  4 ≤ x ≤ 6. 
 
27. f(x) = 2x + 1  for  0 ≤ x ≤ 4. 28. f(x) = x 2  for  0 ≤ x ≤ 2. 
 
29. f(x) = x 2  for  1 ≤ x ≤ 3. 30. f(x) = x    for  0 ≤ x ≤ 4. 
 
31. f(x) = sin(x)  for  0 ≤ x ≤ π. 32. f(x) = cos(x)  for  0 ≤ x ≤ 

π. 
 

33. Calculate the average value of  f(x) = x     on the interval  [0, C]  

for  C = 1, 9, 81, 100.  What is the pattern? 
 

34. Calculate the average value of  f(x) =  x   on the interval  [0, C]  

for  C = 1, 10, 80, 100.  What is the pattern? 
 

35. Fig. 15  shows the number of telephone calls per minute at a  

 large company.  (a)  Estimate the average number of calls per minute  

 from 8 am  to  5 pm.   (b)  From  9 am to  1 pm. 
 
36. Fig. 16  shows the velocity of a car during a  5 hour trip. 

 (a) Estimate how far the car traveled during the 5 hours. 

 (b) At what constant velocity should you drive in order to travel the  

  same distance in 5 hours? 
 
37. (a) How much work is done lifting a 20 pound bucket from the ground to the top of a 30 foot  

  building with a cable which weighs 3 pounds per foot?  

(b) How much work is done lifting the same bucket from the ground to a height of 15 feet with the 

same cable? 
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38. (a) How much work is done lifting a 60 pound chair from the ground to the top of a 20 foot  

  building with a cable which weighs 1 pound per foot?  

(b) How much work is done lifting the same chair from the ground to a height of 5 feet with the same 

cable? 
 
39. (a) How much work is done lifting a 10 pound calculus book from the ground to the top of a 30 foot  

  building with a cable which weighs 2 pounds per foot?  

(b) From the ground to a height of 10 feet? (c) From a height of 10 feet to a height of 20 feet? 
 

40. How much work is done lifting an 80 pound injured child to the top of a 20 foot hole using a stretcher 

weighing 14 pounds and a cable which weighs 1 pound per foot? 
 

41. How much work is done lifting an 60 pound injured child to the top of a 15 foot hole using a stretcher 

weighing 10 pounds and a cable which weighs 2 pound per foot? 
 

42. How much work is done lifting an 120 pound injured adult to the top of a 30 foot hole using a stretcher 

weighing 10 pounds and a cable which weighs 2 pound per foot? 
 
 
 
 
 
 
 
 
 
 
 
 
Section 4.7 PRACTICE  Answers 
 

Practice 1: Using geometry (Fig. 17):  A = 
1
2(2)(1)  = 1  and  B = 

1
2(4)(2)  = 4  so  total area = A + B = 5. 

 Using integrals:   
 

 A =    ⌡
⌠

0

1
  (3–x)  – (1+x) dx   = 

 ⌡
⌠

0

1
  (2 – 2x)  dx   = 2x – x2 |

1

0
  =  (2 – 1) – (0) = 1. 

 B =    ⌡
⌠

1

3
  (1+x)  – (3–x) dx   = 

 ⌡
⌠

1

3
  (2x – 2)  dx   = x2  – 2x|

3

1
  =  (9 – 6) – (1 – 2) = 4.  

 

The single integral   ⌡
⌠

0

3
  (1+x)  – (3–x) dx   is not correct:    ⌡

⌠

0

3
  (1+x)  – (3–x) dx  = 3 . 
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Practice 2: Average value  =    
1

b–a ⌡⌠

a

b
 f(x) dx   = 

1
9–0 ⌡⌠

0

9
   5 + t  dt   

 

  =  
1
9  ⌡⌠

0

9
   5 + t1/2  dt  =  

1
9 ( 5t  +  

2
3 t3/2 ) |

9

0
     

  =  
1
9 (45 + 

2
3 93/2 )  –  

1
9 (0)  =  

1
9 (45 + 18)  = 7  cars per hour. 

 
 
Practice 3: Work = (force).(distance)  =  (10 pounds).(30 feet)  =  300  foot.pounds. 
 
 
 
 
Practice 4: (a) force = (force for cable) + (force for object) 
 
   =  (length of cable)(density of cable)  +  10 pounds 
 
   =  (50 – x  feet)(3 pounds/foot)  +  10 pounds  =  160 – 3x  pounds 
 
      

(b) "from the ground to a height of 10  feet:" 
 
 Work ≈ ∑ (subinterval work)   = ∑ f(ci) ∆xi  = ∑ {160 – 3ci} ∆xi       (a Riemann sum)  

 

  →  
 ⌡⌠

0

10
 {160 – 3x} dx     as the mesh approaches 0. 

 

 "From a height of 10 feet to a height of 20 feet:"   work =  ⌡⌠

10

20
 {160 – 3x} dx .    

 
 


