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4.9 APPROXIMATING DEFINITE INTEGRALS   
 

The Fundamental Theorem of Calculus tells how to calculate the exact value of a definite integral IF the 

integrand function is continuous and IF we can find an antiderivative of the integrand.  In practice, however, 

we may need the definite integral of a function defined by a table of measurements or a graph, or of a 

function which does not have an elementary antiderivative.  This section includes several techniques for 

getting approximate numerical values for definite integrals without using antiderivatives.  Mathematically, 

exact answers are preferable and satisfying, but for most applications, a numerical answer with several digits 

of accuracy is just as useful. 
 

The ideas behind the approximation methods are geometrical and rather simple, but using the methods to get 

good approximations typically requires lots of arithmetic, something calculators are very good and quick at 

doing.  All of these approximate methods can be easily programmed, and program listings for two of these 

methods are included after the Practice Answers. 
 
The General Approach 
 

The methods in this section approximate the definite integral of a function  f  by  

building "easy" functions close to  f  and then exactly evaluating the definite integrals  

of the "easy" functions.  If the "easy" functions are close enough to f, then the sum  

of the definite integrals of the "easy" functions will be close to the definite integral  

of  f.  The Left, Right and Midpoint approximations fit horizontal lines to f , the  

"easy" functions are constant functions, and the approximating regions are rectangles  

(Fig. 1).  The Trapezoidal Rule fits slanted lines to  f , the "easy" functions are  

linear, and the approximating regions are trapezoids (Fig. 2).  Finally, Simpson's  

Rule fits parabolas to f, and the "easy" functions are quadratics  (Fig. 3).   
 

The Left and Right approximation rules are simply Riemann sums with the point   
ci  in each subinterval chosen to be the left or right endpoint of that subinterval.   

They typically require a large number of computations to get even mediocre 

approximations and are seldom used in practice.  They 

and the Midpoint rule are discussed at the end of the 

problem set. 
 

All of the methods divide the interval  [a,b]   into  n  equally–long subintervals.   

Each subinterval has length  h = ∆xi = 
b–a

n    , and the points of the partition are 

x0 = a , x1 = a + h, x2 = a + 2.h, . . . , xi = a + i.h , . . . , xn = a + n.h = a + n(
b–a
n   ) = b. 
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Approximating A Definite Integral Using Trapezoids 
 

If the graph of  f  is curved, then slanted lines typically come closer to the graph of  f  than horizontal ones 

do, and the slanted lines lead to trapezoidal regions  

(Fig. 2). 
 

The area of a trapezoid is  (base).(average height) 

so the area of the first trapezoid in Fig. 4  is 
 

  (∆x). 
y0 + y1 

2    = 
∆x
2  (y0 + y1 ) .   

Similarly, the areas of the other trapezoids are  
 

  
∆x
2  (y1 + y2 ) ,    

∆x
2  (y2 + y3 ) ,   . . .  ,    

∆x
2  (yn–1 + yn )   . 

The sum of the trapezoidal areas is 
 

Tn  =  
∆x
2  (y0 + y1 )  + 

∆x
2  (y1 + y2 )  +  

∆x
2  (y2 + y3 )  + . . . + 

∆x
2  (yn–1 + yn )  

 

 =  
∆x
2    {y0 + 2y1 + 2y2 + . . . + 2yn–1 + yn }  or, equivalently, 

 

 
∆x
2   { f(x0) + 2f(x1) + 2f(x2) + . . . +  2f(xn–1) + f(xn) }.   

 
Each  f(xi)  value, except the first (i = 0)  and the last (i = n), is the right–endpoint height of one trapezoid 

and the left–endpoint height of the next trapezoid so it shows up in the calculation for two trapezoids and is 

multiplied by two in the formula for the trapezoidal approximation. 

 

 
 

  
 Trapezoidal Approximation Rule 
  

 If   f  is integrable on  [a,b], and  [a,b]  is partitioned into  n  subintervals of length  h = 
b–a
n    , 

 then  the Trapezoidal approximation of    ⌡⌠

a

b
 f(x) dx    is 

 

       Tn  =    
h
2  { f(x0) + 2f(x1) + 2f(x2) + . . . +  2f(xn–1) + f(xn) } 

   
 

Example 1:  Calculate T4 , the Trapezoidal approximation of  ⌡⌠

1

3
  f(x) dx ,  for the function values in Table 1. 

x     f(x)

1.0!  4.2

1.5!  3.4

!2.0!  2.8

!2.5!  3.6

!3.0!  3.2

Table 1
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Solution: The step size is  h = (b–a)/n = (3–1)/4 = 1/2 .  Then 
 

 T4 =  
h
2  { f(x0) + 2f(x1) + 2f(x2) +  2f(x3) + f(x4) }  

  = 
.5
2   { 4.2 + 2(3.4) + 2(2.8) +  2(3.6) + (3.2) } = (.25)( 27 ) = 6.75 . 

Let's see how well the trapezoidal rule approximates an integral whose exact value we know, ⌡⌠

1

3
   x2 dx = 8 

2
3  . 

Example 2: Calculate T4 ,  the Trapezoidal approximation of  ⌡⌠

1

3
   x2 dx   for  n = 4. 

 
Solution:  As in Example 1, h = .5  and x0 = 1, x1 = 1.5, x2 = 2, x3 = 2.5, and   x4 = 3.  Then 
 

T4 = 
h
2  {f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4)} =  

.5
2   {f(1) + 2f(1.5) + 2f(2) + 2f(2.5) + f(3)} 

 

 =  (.25) {1 + 2(2.25) + 2(4) + 2(6.25) + 9} =  8.75 . 
 
Larger values for n  give better approximations:  T20 = 8.67  and   T100 = 8.6668  . 
 

Practice 1: On a summer day, the level of the pond in Fig. 5  went 

down  0.1  feet because of evaporation.  Use the  

 trapezoidal rule to approximate the surface area of the  

 pond and then calculate how much water evaporated. 

 

 
Approximating A Definite Integral Using Parabolas 
 

If the graph of  f  is curved, even the slanted lines may not fit the graph  

of  f  as closely as we would like, and a large number of subintervals  

may still be needed with the Trapezoidal rule to get a good approximation of the definite integral.  Curves 

typically fit the graph of  f  better than straight lines, and the easiest nonlinear curves are parabolas. 
 

Three points  (x0, y0), (x1, y1), (x2, y2)  are needed to determine the 

equation of a parabola, and the area under a parabolic region with 
evenly spaced  xi  values  (Fig. 6)  is   
 

 (2∆x).{ 
y0 + 4y1 + y2

6   }  =  
∆x
3   .{ y0 + 4y1 + y2 }. 

(The steps to verify this formula for parabolas are outlined in problem 32.)   

 

Taking the subintervals in pairs, the areas of the other parabolic regions are 
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∆x
3   .{ y2 + 4y3 + y4 },   

∆x
3   .{ y4 + 4y5 + y6 

}, . . . ,    
 

  
∆x
3   .{ yn–2 + 4yn–1 + yn } 

 
so the sum of the parabolic areas  (Fig. 7)  is 
 
 

Sn =  
∆x
3   .{ y0 + 4y1 + y2 }   

 

  +   ∆x
3   .{ y2 + 4y3 + y4 }   

 

  +  . . .  +   
∆x
3   .{ yn–2 + 4yn–1 + yn } 

 

 = 
∆x
3   .{ y0 + 4y1 + 2y2 + 4y3 + 2y4  +  . . .  + 2yn–2 + 4yn–1 + yn }   or, equivalently, 

 
∆x
3   {f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) +. . . + 2f(xn–2) + 4f(xn–1) + f(xn)}. 

 
In order to use pairs of subintervals, the number  n  of subintervals must be even.  The coefficient pattern  

for a single parabola is  1–4–1, but when we put several parabolas next to each other, they share some 

edges and the pattern becomes  1–4–2–4–2– . . . –2–4–1  with the shared edges getting counted twice. 
 
  
 Parabolic Approximation Rule  (Simpson's Rule) 
  
 If  f  is integrable on  [a,b], and  [a,b] is partitioned into an even number n  of subintervals of   

 length  h = 
b–a
n    , then the Parabolic approximation of    ⌡⌠

a

b
 f(x) dx   is 

 

      Sn  = 
h
3  .{ f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + ... +  4f(xn–1) + f(xn) } 

   
 

Example 3: Calculate S4 , Simpson's parabolic approximation of  ⌡⌠

1

3
  f(x) dx ,  for the function in Table 1. 

Solution: The step size is  h = (b–a)/n = (3–1)/4 = 1/2 .  Then 
 

 S4 =  
h
3  { f(x0) + 4f(x1) + 2f(x2) +  4f(x3) + f(x4) }  

  = 
1/2
3   { 4.2 + 4(3.4) + 2(2.8) +  4(3.6) + (3.2) } = 

1
6( 41 )  ≈ 6.833 . 

 

Example 4: Calculate S4 , Simpson's parabolic approximation of  ⌡⌠

1

3
   2x dx   for  n = 4. 
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Solution:  As in the previous Examples, h = (b–a)/n = .5  and x0 = 1, x1 = 1.5, x2 = 2, x3 = 2.5, and x4 = 3. 
 

S4 = 
h
3  {f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + f(x4)} =  

.5
3   {f(1) + 4f(1.5) + 2f(2) + 4f(2.5) + f(3)}  

 =  ( 
1
6  ) {2 + 4(2.828427) + 2(4) + 4(5.656854) + 8} =  

1
6 (51.941124)   =  8.656854 . 

 
Larger values for n  give better approximations:  S20 = 8.656171  and   S100 = 8.656170  . 

 
Practice 2: Use Simpson's Rule to estimate the area of the pond in Fig. 5. 

 
Which Method Is Best? 
 

The hardest and slowest part of these approximations, whether by hand or by computer, is the evaluation of 
the function at the  xi  values.  For  n  subintervals, all of the methods require about the same number of 

function evaluations.  Table 2  illustrates how closely each method approximates the definite integral of  

1/x  using several values of  n.  The values in Table 2  also show how quickly the actual error shrinks as the 

values of  n  increase:  just doubling  n  from  4  to  8  cut the actual error of the parabolic approximation of 

this definite integral by a factor of 9 –– a good reward for our extra work.  The rest of this section discusses 

"error bounds" of the approximations so we can know how close our approximation is to the exact value of 

the integral even if we don't know the exact value. 
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    Table 2:  Approximating  ⌡⌠
1

5

 
1
x dx   =  ln 5 = 1.609437912  

 
  Using  n=4  ( h= (5–1)/4 = 1 ) 
 method approximation M error bound actual error 
 T4 1.6833333 2 .6666666 .07389542 
 S4 1.6222222 24 .5333333 .01278431 
 L4 2.083333333 1 2 .47389542 
 R4 1.283333333 1 2 .32610458 
 M4 1.574603175 2 .33333333 .03483474 
 
   Using  n=8  ( h= (5–1)/8 = 1/2 ) 
 T8 1.628968254 2 .1666666 .01953034 
 S8 1.610846561 24 .0333333 .00140865 
 L8 1.828968254 1 1 .21953034 
 R8 1.428968254 1 1 .18046966 
 M8 1.599844394 2 .08333333 .00959352 
 
   Using  n=20  ( h= (5–1)/20 = 1/5 ) 
 T20 1.612624844 2 .0266667 .00318693 
 S20 1.609486789 24 .0008533 .00004888 
 L20 1.692624844 1 .4 .08318693 
 R20 1.532624844 1 .4 .07681307 
 M20 1.607849324 2 .01333333 .00158859 
 

 
How Good Are the Approximations? 
 
The approximation rules are valuable by themselves, but they are particularly useful because there are "error 

bound"  formulas that guarantee how close the approximations are to the exact values of the integrals.  It is 

useful to know that an integral is "about 3.7," but we can have more confidence if we know that the integral is 

"within .0001 of 3.7 ."  Then we can decide if our approximation is good enough for the job at hand or if we 

need to improve it.  The formulas for the error bounds can also be solved to determine how many subintervals 

are needed to guarantee that our approximation is within some specified distance of the exact answer.  There is 

no reason to use 1000 subintervals if 18 will give the needed accuracy.  Unfortunately, the formulas for the 

error bounds require information about the derivatives of the integrands, so we can not use these formulas to 

determine error bounds for the approximations of integrals of functions defined by tables of values.  
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 Error Bound for Trapezoidal Approximation 
 
  If   the second derivative of  f  is continuous on  [a,b]  and  M2 ≥ { maximum of  | f ''(x) |  on [a,b] }, 
  

  then the "error" of the Tn  approximation is    |  ⌡⌠
a

b
 f(x) dx   –  Tn |  ≤   

 (b–a)3

12 n2   .M2 = "error bound." 

  
 

The "error bound" formula    
 (b–a)3

12 n2   .M2   for the Trapezoidal approximation is a "guarantee:"  the actual 

error is guaranteed to be no larger than the error bound.  In fact, the actual error is usually much smaller than 

the error bound.  The word "error" does not indicate a mistake, it means the deviation or distance from the 

exact answer. 
 

Example 5: We can be certain that the  T10  approximation of ⌡⌠

0

2
   sin( x2 ) dx  is within what distance 

of the exact value of the integral? 
 

Solution: b – a = 2, n = 10,  f(x) = sin( x2 ) ,  and  f "(x) = –4x2.sin( x2 ) + 2.cos( x2 )  is continuous  

 on  [ 0, 2].  The graph of  f "(x)  is given in Fig. 8 .  Even though we may not know the exact 
maximum value  M2  of   | f "(x) |  on  [ 0, 2], it is  

 clear from the graph that  M2 ≤ 11.  Then  
 

 "actual error" ≤ "error bound" =  
 (b–a)3

12 n2   .M2   

   =  
 (2)3

12 (10)2
  .(11) = 

88
1200   < 0.074   

 
 so we can be certain that our  T10  approximation of the definite integral is within  .074  of the exact 

value: 

   T10  – 0.074 ≤   ⌡⌠

0

2
   sin( x2 ) dx  ≤   T10  + 0.074 . 

  
 T10  = 0.7959247 , so we can be certain that the value of 

the integral is between  0.722  and  0.870 . 

 
Practice 3: Find an error bound for the  T12  approximation  

 of     ⌡⌠

2

5
 1
x   dx  .   
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Example 6: How large must  n  be to be certain that  Tn  is within  0.001  of  ⌡⌠

0

2
   sin( x2 ) dx  ? 

 
Solution: The "allowable error" of  0.001  is given, and we are asked to find n.  From Example 5 we  
 know that  M2 ≤ 11, so we want the error bound to be less than the allowable error of 0.001.  Then 

 .001 ≥ "error bound" =  
 (2)3

12 n2  .(11) = 
88
12  

1
n2   =  

22
3n2  .  Solving for  n, we  have  n2 ≥ 

22
0.003  > 7334   

 so  n ≥ 7334  ≈ 85.6 .  Since  n  must be an integer,  we can be certain that  T86  is within 

 0.001 of  ⌡⌠

0

2
  sin( x2 ) dx .  T86  ≈ 0.80465 , so we can be certain that the exact value of the integral is 

between  0.80365  and  0.80565 .  As is usually the case,  T86  is even closer than  0.001  to the exact 

value,  | T86 – exact value | ≈  0.00012 . 

Practice 4: How large must  n  be to be certain that  Tn  is within  0.001  of   ⌡⌠

2

5
 1
x   dx ?  

 
 Error Bound for Simpson's Parabolic Approximation 
 
  If   the fourth derivative of  f  is continuous on [a,b] , and  M4 ≥ {maximum of  | f(4)(x) | on [a,b]}, 
 

  then the "error" of the Sn  approximation is   |  ⌡⌠
a

b
 f(x) dx   –  Sn |  ≤   

 (b–a)5

180 n4  .M4  = "error bound." 

  
 

 
Example 7: Find an error bound for the  S10   

 approximation of ⌡⌠

0

2
   sin( x2 ) dx  . 

 

Solution: b – a = 2, n = 10, f(x) = sin( x2 ) ,  and   

 f(4)(x) = (16x4 – 12)sin( x2 ) – 48x2 cos( x2 )  is  

 continuous on  [ 0, 2] .  From  Fig. 9, the graph of  
 f(4)(x) on [ 0, 2] , we know that  M4 ≤ 165.  Then  
 

 "error" ≤  
 (b–a)5

180 n4  .M4  =  
 (2)5

180 (10)4
  (165)  = 

5280
1800000   < 0.003   

 
so we can be certain that our  S10  approximation of the definite integral is within  0.003  of the exact value: 

   S10  – 0.003 ≤   ⌡⌠

0

2
   sin( x2 ) dx  ≤   S10  + 0.003 . 
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 S10  = 0.80537615 , so we are certain that the exact value of the integral is between  0.80237615 and 

0.80837615 .  Notice that we got a much narrower guarantee using  S10  compared to using  T10   

 to approximate the integral . 
 

Example 8: How large must  n  be to be certain that  Sn  is within  0.001  of  ⌡⌠

0

2
   sin( x2 ) dx  ? 

 
Solution: We are given  an "allowable error" of  0.001  and are asked to find n.  From Fig. 9  we know 
  that  M4 ≤ 165, so we want the error bound to be less than the allowable error of  0.001.  Then    

 0.001 ≥ "error bound" =  
 (2)5

180 n4 (165)   =  
5280

180 n4  .  Solving for  n,  we  have   

 n4 ≥ 
5280

(.001)180   ≥ 29,333.34   so  n ≥ 
4

29333.34  ≈ 13.08 .  Since  n  must be an even integer,  we 

can take  n = 14  and be certain that  S14  is within  0.001  of  ⌡⌠

0

2
  sin( x 2 ) dx .   In fact,  

S14 = 0.8049239 is even closer than  0.001  to the exact value,  | S14 – exact value | ≈  0.00015 . 
 

A variety of other methods for approximating definite integrals can be found in most books on Numerical 

Analysis.  Definite integrals occur often in applied problems, and these approximation methods can get us 

the numerical answers we need even if we can't find an antiderivative of the integrand.  If you have a 

programmable calculator, program Simpson's rule.  It will be useful in Chapter 5. 

 

 

 
PROBLEMS 
 

For problems 1 and 2, use the values given in Table 3 to approximate the value of   ⌡⌠

2

6
  f(x) dx . 

1.  Calculate T4   and  S4  .  
 
2. Calculate T8   and  S8  . 
 
 
 
For problems 3 and 4, use the values given in Table 4  

to approximate the value of   ⌡⌠

–3

1
  g(x) dx . 

 
3.  Calculate T8   and  S8  .  
 
4. Calculate T4   and  S4  . 
 
 
 

Table 3

2.0!     2.1

x     f(x)

2.5!     2.7

3.0!     3.8

3.5!     2.3

4.0!     0.3

4.5!   –1.8

5.0!   –0.9

5.5     !0.5 

6.0   !  2.2

Table 4

x      g(x)

–3.0!     4.2
–2.5!     1.8
–2.0!     0.7

–1.5!     1.5

–1.0!     3.4

–0.5     !4.3

!0     !3.5

0.5!    –0.3

1.0!    –4.6
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For problems  5 – 10,  calculate  (a) T4  ,  (b) S4  , and (c) the exact value of the integral. 
 

5. ⌡⌠

1

3
   x  dx 6. ⌡⌠

0

2
  ( 1 – x )  dx 7. ⌡⌠

–1

1
   x2  dx 

 

8. ⌡⌠

2

6
  

1
x   dx 9. ⌡⌠

0

π
   sin(x)  dx 10. ⌡⌠

0

1
  x    dx 

 
For problems 11 – 16,  calculate  (a) T6  and  (b)  S6 . 
 

11. ⌡⌠

0

2
  

1
1 + x3 

    dx 12. ⌡⌠

1

2
   2x dx 13. ⌡⌠

–1

1
  4 – x2     dx 

 

14. ⌡⌠

0

1
   e–x2

  dx 15. ⌡⌠

1

4
  

sin(x)
x     dx 16. ⌡⌠

0

1
  1 + sin(x)    dx 

 
For problems 17 – 23, calculate  (a) the error bound for  T4  ,  (b)  the error bound for  S4  ,  (c)  the value 

of  n  so the error bound for  Tn  is less than   0.001 ,  and  (d)  the value of  n  so the error bound for  Sn  is 

less than  0.001 .  
 

17. ⌡⌠

1

3
   x  dx 18. ⌡⌠

0

2
  ( 1 – x )  dx 19. ⌡⌠

–1

1
   x3  dx 

 

20.⌡⌠

2

6
  

1
x   dx 21. ⌡⌠

0

π
   sin(x)  dx 22. ⌡⌠

1

4
  x    dx 

 

23. A friend has asked you to help calculate the area of a piece of land located between a river and a road  

(Fig. 10).  Estimate the area. 

24. Estimate the area of the island in Fig. 11. 
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25. The average depth of the reservoir in  

 Fig. 12  is 22 feet.  Estimate the amount  

 of water in the reservoir. 
 
26. Table 5  shows the speedometer readings  

 for a car at one minute intervals.  Estimate how 

far the car traveled  (a)  during the first 5 minutes 

of the trip  and  (b)  during the first 10 minutes of the trip. 

 
27. Table 6  shows the speed of a jogger at one minute intervals.  Estimate how far the jogger ran during  

 the workout. 

 
28. Use the error formula for Simpson's rule to show that the parabolic approximation is the exact value of  

 the integral if the integrand is a polynomial of degree 3 or less, ax3 + bx2 + cx + d . 
 
29. A trapezoidal region  (Fig. 13) with base  b  and heights  h1 and  h2   

 (assume h1 ≤  h2)  can be cut into a rectangle with base b  and height  h1   

 and a triangle with base  b  and height  h1 – h2 .  Show that the sum of  

 the area of the rectangle and the area of the triangle is  b.{ 
h1 + h2

2   } . 
 
30. Let  f(m)  be the minimum value of  f  on the interval  [x0 , x1 ].  Let  f(M)   

 be the maximum value of  f  on   [x0 , x1 ].  And let  h = x1 – x0  .  Show  

 that the trapezoidal value,  h. { 
f(x0 ) + f(x1)

2   } , is between  h.f(m)  and  

h.f(M).  From this result, it can be shown that the trapezoidal approximation is between the lower and 

upper Riemann sums for  f.  Since the limit (as h approaches 0) of these Riemann sums is the definite 

integral of  f , we can conclude that the limit of the trapezoidal sums is the value of the definite integral. 

 

 

Table 5:  Time (minutes) and Velocity (feet/minute) for a car.

Time!        0!      1!        2!       3!      4!       5!       6!       7!       8!       9!     10

Velocity!    0  ! 2000!  3000!  5000!  5000!  6000!  5200!  4400 ! 3000!  2000!  1200
 

Table 6:  Time (minutes) and Velocity (feet/minute) for a jogger.

Time!        0!     1!        2!      3!       4!       5!       6!        7!      8!       9!      10

Velocity!    0!   420!    540   !300!    500!    580    !520!    440!   360    !260  !  180
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31.  Let  f(m)  be the minimum value of  f  on the interval  [x0 , x2 ].  Let  f(M)  be the maximum of  f  on    

 [x0 , x2 ].  And let  h = x1 – x0 = x2 – x1   .  Show that the parabolic value, 
 

 2h .{ 
f(x0) + 4f(x1) + f(x2)

6    }  is between  2h.f(m)  and  2h.f(M).  From this result, it can be shown that 

the parabolic approximation is between the lower and upper Riemann sums for  f.  Since the limit (as h 

approaches 0) of these Riemann sums is the definite integral of  f , we can conclude that the limit of the 

parabolic sums is the value of the definite integral. 
 

32. This problem leads you through the steps to show that the area under a parabolic region with evenly 
spaced  xi  values ( x0 = m–h, x1 = m, x2 = m+h ) as in Fig. 14  is   

 

    
h
3  .{ f(x0) + 4f(x1) + f(x2) } =   

h
3  .{ y0 + 4y1 + y2 } 

. 
 
 (a) For  f(x) = Ax2 + Bx + C, a parabola, verify that   
 

 ⌡⌠

m–h

m+h
 f(x) dx   = 

A
3  x3 + 

B
2  x2 + Cx |

x=m+h

x=m–h
    

 

  =  2Am2h + 
2
3  Ah3  + 2Bmh + 2Ch. 

 
 (b) Expand  y0 = f(m–h) = A(m–h)2 + B(m–h) + C,  

  y1 = f(m) = Am2 + Bm + C , and   

  y2 = f(m+h) = A(m+h)2 + B(m+h) + C.    Then verify that   
 

  
h
3  .{ y0 + 4y1 + y2 } = 2h { 

f(m–h) + 4f(m) + f(m+h)
6    }  

 

   = 2Am2h + 
2
3  Ah3  + 2Bmh + 2Ch . 

 
 (c) Compare the results of parts (a) and (b)  to conclude that for any parabola  f(x) = Ax2 + Bx + C, 
 

 ⌡⌠

m–h

m+h
 f(x) dx   =  2h { 

f(m–h) + 4f(m) + f(m+h)
6    } =  

h
3  .{ y0 + 4y1 + y2 }. 

 

 
Rectangular Approximations:  Left Endpoint, Right Endpoint, and Midpoint Rules 
 

The rectangular approximation methods fit horizontal lines to the integrand.  The approximating regions are 

rectangles, and the sum of the areas of the rectangular regions is a Riemann sum.  The Left and Right 

Endpoint Rules are easy to understand and use, but they typically require a very large number of subintervals 

to provide good approximations of a definite integral.  The Midpoint Rule uses the value of the function at the 
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midpoint of each subinterval.  If these midpoint values of  f  are available, for example when  f  is given by a 

formula, then the Midpoint Rule is often more efficient than the Trapezoidal rule.  The rectangular 

approximation rules and their error bounds are given below. 
 
 Left endpoint:  Ln = h.{ f(x0) + f(x1) + f(x2) + . . . + f(xn–1) } 

 Right endpoint:  Rn = h.{ f(x1) + f(x2) + f(x3) + . . . + f(xn) } 

 Midpoint Rule: Mn = h.{ f(A) + f(A + h) + f(A + 2h) + . . . + f(A + (n–1)h) }  where  A = x0 + 
h
2   .   

  ( The points  A, A + h, A + 2h, . . .  are the midpoints of the subintervals. ) 
 

The "error bound"  for  Ln  and  Rn   is     
(b–a)2

2 n   .M1   where  M1 ≥ {maximum of  | f '(x) | on [a,b]}. 
 

The "error bound" for Mn  is   
(b–a)3

24 n2   .M2   where  M2 ≥ {maximum of  | f ''(x) | on [a,b]}.  This is half the 

error bound of  Tn , the trapezoidal approximation. 
 
For problems  33 – 38,  calculate  (a) L4  ,  (b) R4 , (c) M4 ,  and (d) the exact value of the integral. 
 

33. ⌡⌠

1

3
   x  dx 34. ⌡⌠

0

2
  ( 1 – x )  dx 35. ⌡⌠

–1

1
   x2  dx 

 

36. ⌡⌠

2

6
  

1
x   dx 37. ⌡⌠

0

π
   sin(x)  dx 38. ⌡⌠

0

1
  x    dx 

 
39. Show that the trapezoidal approximation is the average of the left and right endpoint approximations: 
 Tn  =  ( Ln + Rn )/2 . 
 

40. Which endpoint rule will give a better approximation of  ⌡⌠

a

b
   f(x ) dx   if  f  is concave up on  [a, b]? 

 

Calculator Problems 
 

The following definite integrals arise in applications, but they do not have easy antiderivatives.  Use 
Simpson's Rule with  n = 10  and  n = 40 to approximate their values.  (Is  S40  very different from S10 ?) 
 

41.  ⌡⌠

–1

2
  1 + 4.x2    dx .   This is the length of the curve  y = x2  from  (–1, 1)  to  (2, 4). 

 

42.  ⌡⌠

0

π
  1 + cos2(x)     dx .   This is the length of one arch of the curve  y = sin(x). 
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43.  ⌡⌠

0

2π
  16.sin2(x) + 9.cos2(x)    dx .    

 This is the length of the ellipse    
x2

16   +  
y2

9    =  1 . 
 

44. 
100

2π ⌡⌠

60

69
   EXP( –{(x – 64)/2.5}2/2 )  dx .     EXP(x) = ex  . 

 This is the percentage of adult females who are between 60  

 and 69 inches tall  (Fig. 15).  Approximate the value of this integral. 
 

45. Approximate the percentage of adult females who are between 61 and 64 inches tall. 
 
 
Section 4.9 Practice Answers 
 

Practice 1: Using the Trapezoidal rule to approximate the surface area of the pond in Fig. 5, 

 

 T ≈  
5 feet

2   .{ 0 + 2.12 + 2.14 + 2.16 + 2.18 + 2.18 + 0  feet } = 390 ft2.   

 Then  volume = (surface area)(depth) ≈ (390 ft2)(0.1 ft) = 39 ft3 . 
 

Practice 2: Using Simpson's Rule to estimate the area of the pond in Fig. 5, 
 

 S ≈  
5 feet

3   { 0 + 4.12 + 2.14 + 4.16 + 2.18 + 4.18 + 0  feet} =  413.3  ft2. 
 

Practice 3: f(x) = 
1
x  , b – a = 3, n = 12, f "(x) = 

2
x3  .  On the interval  [2,5],  | f "(x) | = |  

2
x3   | ≤   

2
23   = 

1
4    

 

 so we can take  M2 = 
1
4  .  Then   | error | ≤  

(b–a)3

12n2   .M2  =  
33

12(12)2
 
1
4  =  

27
6912   ≈  0.004 . 

 

Practice 4: "error bound" =  
(b–a)3

12n2   .M2  =  
(3)3

12n2   . 
1
4   = 

27
48n2   .  Setting this  "error bound"  equal to 0.001  

and  solving for  n, we  get  n  =   
27

48.(0.001)      = 562.5   ≈  23.7 .  Put  n = 24.   

 We can be certain that  T24  is within  0.001  of the exact value of the integral.  (We can not 

guarentee that  T23  is within  0.001  of the exact value of the integral, but it probably is.) 
 


