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5.3 MORE  WORK  APPLICATIONS 
 

In Section 4.7 we introduced the problem of calculating the work done in lifting an object using a cable 

which had weight.  This section continues that introduction and extends the process to handle situations in 

which the applied force or the distance or both may be variables.  The method we used before is used again 

here.  The first step is to divide the problem into small "slices" so that the force and distance vary only 

slightly on each slice.  Then the work for each slice is calculated, the total work is approximated by adding 

together  (a Riemann sum) the work for each slice, and , finally, a limit is taken to get a definite integral 

representing the total work.  There are so many possible variations in work problems that it is vital 

that you understand the process. 
 

The work done on an object by a constant force is the magnitude of the force applied to the object 

multiplied by the distance over which the force is applied:  work = (force).(distance).  
 

Example 1: A 10 pound object is lifted 40 feet from the ground to the top of a building  

using a cable which weighs 1/2 pound per foot  (Fig. 1).  How much work is done? 
 

Solution: This type of problem appeared in section 4.7, but it is a good example of the 

process of dividing the problem into pieces and analyzing each piece.  We can partition 

the height of the building (Fig. 2).  Then the work done to lift the object from the  
 height  xi  to the height xi+1  is  the force applied times the distance moved: 

  force = (weight of the object) + (weight of the cable) 

   = (10 pounds) + ( 0.5 (length of hanging cable) )  
   = 10 + 0.5(40 – xi )  pounds  =  30 – 0.5xi   pounds 

  distance  = xi – xi–1   feet  =  ∆xi   feet   

  work = (force)(distance) = { 30 – 0.5xi } ∆xi  foot–pounds.   
 

 Total work  ≈  ∑
i=1

n
  { work on  ith  slice }  =   ∑

i=1

n
  { 30 – 0.5xi } ∆xi   foot–pounds    

   →    ⌡
⌠

0

40
  { 30 – 0.5x } dx  = ( 30x – 0.25x2 )|

40

0
  = 800 foot–pounds. 

Practice 1: How much work is done lifting a 130 pound injured person to the top of a 30 foot cliff  

 using a stretcher weighing 10 pounds and a cable weighing 2 pounds per foot? 
 

In the previous Example and Practice problem the distance moved on each part of the partition was always  

∆x, and the force was more complicated.  In some of the following examples, the  ∆x  is part of the force 

calculation.  Analyze each problem. 
 

Example 2: A cola glass in Fig. 3  has the dimensions given in Table 1.  Approximately how much work do 

you do when you drink a cola glass full of water  
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 (weight density = 62.5 pounds/ft3 = 0.5787 ounces/in3)   

 by sucking it through a straw to a point 3 inches  

 above the top edge of the glass? 
 

Solution:  The Table naturally partitions the water into 1 inch  

 thick "slices" (Fig. 4).  The work to move  

 each slice is approximately the weight of the slice  

 times the distance it is moved.  We can use the radius  

 at the bottom of each slice to approximate the volume and  

 then the weight of the slice, and a point half way up each  

 slice to calculate the distance the slice is moved. 
 

    top slice: force = weight = (volume)(density) ≈ π(1.6 in)2(1 in)(0.5787 oz/in3) ≈ 4.7 oz. 

  distance ≈ (distance from middle of slice to lips) = 3.5 in. 

   work ≈ (force)( distance) = (4.7 oz)(3.5 in) = 16.4  oz–in. 
 

 next slice: force = weight = (volume)(density) ≈ π(1.5 in)2(1 in)(0.5787 oz/in3) ≈ 4.1 oz. 

  distance ≈ (distance from middle of slice to lips) = 4.5 in 

   work ≈ (force)( distance) = (4.1 oz)(4.5 in) = 18.4 oz–in. 
 
 The work for the last two slices is  (1.8 oz)(5.5 in) = 9.9 oz–in  and  (2.2 oz)(6.5 in) = 14.3 oz–in. 
 

The total work is the sum of the work needed to raise each slice of water: 

 Total work ≈ (16.4 oz–in) + (18.4 oz–in) + (9.9 oz–in) + (14.3 oz–in) = 59  oz–in. 
 

Practice 2: Approximate the total work needed to raise the water in Example 2  by using the top radius 

of the slice to approximate the weight and the midpoint of each slice to approximate the distance the 

slice is raised. 
 

If we knew the radius of the glass at every 

height, then we could improve our 

approximation by taking thinner slices.  In fact, 

if we knew the radius at every height we could 

have formed a Riemann sum, taken the limit of 

the Riemann sum as the thickness of the slices 

approached 0, and obtained a definite integral.  

In the next Example we do know the radius of 

the container at every height. 
 

 

 

Table 1:  Inside radius of a cola glass

Height above bottom      Inside

of the glass (inches)        radius (inches)

           4                         1.4

           3                         1.6

           2                         1.5

           1                         1.0

           0                         1.1
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Example 3: Find the work needed to raise the water in the cone in Fig. 5a to the top of the straw. 
 
Solution:  We can label the cone (Fig. 5b), and  

 partition the height of the cone to get slices of  

 water.  The work done raising the  ith  slice is the  

 distance the slice is raised times the force needed  
 to move it, the weight of the slice.  For any  ci in  

 the subinterval   
 [yi–1,yi],  the slice is raised a distance of  

 approximately  (10 – ci)  inches. 
 

 Each slice is approximately a right circular  

 cylinder so its volume is  π(radius)2∆y .  At the  

   height y, the radius of the cylinder is  x = y/3 so at  
   the height  ci  the radius is  ci /3.  Then the force is 
 

  force = (volume)(density) ≈ π(radius)2(∆yi)(0.5787 oz/in3) = π ( ci / 3 )2 (∆yi) (0.5787)  ounces. 
 
 The work to raise the ith slice ≈ π(ci / 3)2(∆yi)(0.5787)(10 – ci)  ounce–inches, and the total work is  

 approximately  ∑
i=1

n
  π(ci / 3)2(∆yi)(0.5787)(10 – ci).  As the mesh of the partition approaches 0, the 

Riemann sum approaches the definite integral: 
 

  total work  ≈  ∑
i=1

n
  π(ci / 3)2(∆yi)(0.5787)(10 – ci)   →    ⌡⌠

0

6
   π(y/3)2(0.5787)(10 – y) dy  . 

 

  Total work  =  ⌡⌠

0

6
  π( y/3 )2(0.5787)(10 – y) dy = 

0.5787π
9  ⌡⌠

0

6
 10 y2 – y3 dy   

 

  = 
0.5787π

9   { 
10
3  (6) 3 – 

1
4 (6) 4 } = 79.99 oz–in 

. 
In this example, both the force and the distance were variables and both depended on the height of the  

slice above the bottom of the cone. 
 
 

Practice 3:  How much work is done in drinking just the top 3 inches of the water in Example 3? 
 

Example 4: The trough in Fig. 6  is filled with a liquid weighing 70 pounds per cubic foot.  How much work 

is done pumping the liquid over the wall next to the trough? 
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Solution:   As before, we can partition the height of the trough to get slices of liquid.  In order to form a 

Riemann sum for the total work, we need the weight of a typical slice (Fig. 7) and the distance it is raised. 
  
 slice at height  yi : weight  = (volume)(density)  

   = (length)(width)(height)(70 pounds/ft3) 

   = (5 ft)( 
1
2  yi ft)( ∆yi ft)(70 pounds/ft3)  

   = 175 yi ∆yi  pounds. 

  distance raised = 6 – yi  ft 

  work  = (175 yi ∆yi  pounds )( 6 – yi  feet )  

   = 175 yi (6 – yi) ∆yi  foot–pounds. 

The rest of the solution is straightforward and follows the pattern of the 

previous problems: 

 Total work ≈  ∑
i=1

n
  { work to raise  ith  slice }   

 

   =   ∑
i=1

n
  { 175 yi (6 – yi) ∆yi  foot–pounds }   

 

   →    ⌡⌠

0

4
  175 y(6 – y) dy   

 

  =  175(3y2 – 
y3
3   )|

4

0
   = 4666.7 foot–pounds. 

 
"Raise the liquid" problems can be handled by partitioning the height of the container and then focusing your  

attention on one typical slice. If you can calculate the weight of that slice and the distance it is raised, the rest 

of the steps are straightforward:  form a Riemann sum, form a definite integral, and evaluate the integral to get 

the total work. 
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Work Moving An Object In A Straight Line 
 
Suppose we are pushing a box along a flat surface (Fig. 8a)  which is smooth in places and rough in other  

places so at some places we only have to push lightly and in other places we have to push hard.  If  f(x)  is 

the amount of force we need to use at 

location  x, and we want to push the box 

along a straight line from  x=a  to  x=b, then 

we can partition the interval [ a, b] into 
pieces,  [a,x1], [x1,x2], . . . , [xn–1,b]  (Fig. 

8b).  The work to move the box along the  ith  
piece from  xi–1  to xi  is approximately 
 
 

 (force).(distance) ≈ f(ci).(xi – xi–1)  = f(ci) ∆xi  for any ci  in the subinterval  [xi–1 , xi ]. 
 

The total work is the sum of the work along each piece,  ∑
k=1

n
  f(ci) ∆xi , a Riemann sum.  As we take  

smaller and smaller subintervals (as the mesh of the partition approaches 0), the Riemann sum approaches the 

definite integral: 
 

 ∑
k=1

n
  f(ci) ∆xi   →  ⌡⌠

a

b
  f(x) dx  =  total work . 

 
  

 If  an object starts at  x = a  and is moved in a straight line to  

  the location  x = b > a  by applying a force of  f(x)  at every  

  location  x  between  a  and b,  

 then  the total work done on the object is   ⌡⌠

a

b
  f(x) dx   . 

   
 

This has a simple geometric interpretation.  If  f(x)  is the force applied at  

the position x  (Fig. 9), then the work done to move from position   

x = a  to position  x = b  is the area under the graph of  f  from   

x = a  to  x = b. 
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Example 5: Suppose  a force of  7x  pounds is required to stretch a  

 spring  (Fig. 10)  x  inches past its natural length.  How much work  

 will be done stretching the spring from its natural length  

 (x = 0) to 5 inches beyond its natural length (x = 5 inches)? 
 

Solution:  Work =  ⌡⌠

a

b
  f(x) dx  =  ⌡⌠

0

5
  7x  dx  =  

7x2
2    |

5

0
   =  87.5  inch–pounds.   

   This can also be don graphically  (Fig. 11). 
 

Practice 4:  How much work is done to stretch the spring in the previous example 

from 5 inches past its natural length to 10 inches past its natural length? 
 
 

The spring example is an application of a physical principle discovered by the  

English physicist Robert Hooke (1635–1703), a contemporary of Newton. 

 
 

  

 Hooke's Law: The force needed to stretch or compress a spring  x   units from its natural length is 

proportional to the distance  x : force  f(x) = kx  for some constant  k.  (Fig. 12) 
    
 

The "k" in Hooke's Law is called the "spring constant".  It varies from spring 

to spring  (depending on the materials and dimensions of the spring and even 

on the temperature), but is constant for each spring as long as the spring is not 

overextended or overcompressed.  In fact, Hooke's law holds for most solid 

objects, at least for limited ranges of force:  
 

"Nor is it observable in those bodies only, but in all other springy bodies  

whatsoever, whether metal, wood, stones, baked earth, hair, horns, silk, 

bones, sinews, glass and the like."   (Hooke).    
 

Most bathroom scales use springs and are based on Hooke's Law for compressing a spring. 
 
Example 6: A spring has a natural length of 43 centimeters, and a weight of 4 grams stretches it to a  

 total length of 75 centimeters.  How much work is done stretching the spring from a total 

length of 63 cm  to a total length of 93 cm? 
 
Solution:  First we need to use the given information to find the value of  k, the spring constant.  A force  

 of  4 g  produces a stretch of 32 cm (total length of 75 cm minus the rest length of 43 cm).  Substituting  

x = 32 cm  and  f(x) = 4 g  into Hooke's Law,  f(x) = kx, we have  4 g = k (32 cm)  so   

 k = 
4 g

32 cm   =  
1 g

8 cm   = .125  g/cm . 
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 The total length of 63 cm  represents a stretch of  20 cm beyond the natural length, and the total length 

of 93 cm  represents a  50 cm  stretch.  Then the work done is 
 

  work = ⌡⌠

a

b
  f(x) dx  = ⌡⌠

20

50
  (.125) x dx  =   (.125) . x

2
2     |

50

20
   =  131.25 g–cm. . 

Practice 5: A spring has a natural length of 3 inches, and a force of 2 pounds stretches it to a total 

length of  8 inches.  How much work is done stretching the spring from a total length of 5 

inches  to a total length of 10 inches? 
 

Lifting a Payload:  The problem of finding the work done lifting a payload from the surface of a moon (or 

any body with no atmosphere) is very similar.  Suppose the moon has a radius of R miles and the payload 

weighs P pounds at the surface of the moon (at a distance of R miles from the center of the moon).  When 

the payload is  x  miles from the center of the moon (x ≥ R), the gravitational attraction between the moon 

and the payload is proportional to the reciprocal of the 

square of the distance  x  between the centers of the 

moon and the payload: 
 

 required force = f(x)  = 
R2P
x2    pounds  (Fig. 13). 

 
 

The total amount of work done raising the payload from the surface (altitude is 0, so x = R) to an altitude of  

R (x = R+R= 2R)  is  
 

work = ⌡⌠

a

b
  f(x) dx = ⌡⌠

R

2R
  

R2P
x2    dx  = R2P (– 

1
x  ) |

2R

R
  =  R2P (– 

1
2R  ) – R2P (– 

1
R  ) = 

RP
2    mile–pounds.  

 

Practice 6: How much work will be needed to raise the payload from the altitude  R  above the surface   

 (x = 2R)  to an altitude of 2R? 
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The appropriate areas under the force graph  (Fig. 

14)  illustrate why the work to raise the payload 

from x = R to x = 2R  was so much larger than the 

work to raise it from x = 2R to x = 3R.  In fact, the 

work to raise the payload from x = 2R  to x = 100R 

is  0.49RP  which is still less that the  0.5RP   

needed to raise the payload from x = R  to x = 2R. 
 

 

The real problem of lifting a payload is much more difficult because the rocket doing the lifting must also 

lift itself (more work) and the mass of the rocket will keep changing as it burns up fuel.  Lifting a payload 

from a body with an atmosphere is even harder:  there is friction from the atmosphere, and the frictional 

force depends on the density of the atmosphere (which varies with height), the speed of the rocket and the 

shape of the rocket.  Life can get complicated. 

 
 
PROBLEMS 
 
1. A tank 4 feet long, 3 feet wide and 7 feet tall  (Fig. 15) is filled with water which  

 weighs 62.5 pounds per cubic foot.  How much work is done pumping the water  

 out over the top of the tank? 
 
2. A tank 4 feet long, 3 feet wide and 6 feet tall is filled with a oil which weighs  

 60 pounds per cubic foot.   

 (a) How much work is done pumping the oil over the top edge of the tank? 

 (b) How much work is done pumping the 3 feet of oil of the top edge of the tank? 
 
3. A tank 5 feet long, 2 feet wide and 4 feet tall is filled with a oil which weighs 60 pounds per cubic foot.   

 (a) How much work is done pumping all of the oil out over the top edge of the tank? 

 (b) How much work is done pumping the top 36 cubic feet of oil out over the top edge of the tank? 

 (c) How long does a 1 horsepower pump take to empty the tank over the top edge of the tank?   

  (A  1  horsepower pump works at a rate of 33,000 foot–pounds per minute.)  A 1/2 horsepower  

  pump?  Which pump does more work? 
 
4. A cylindrical aquarium with radius 2 feet and height 5 feet (Fig. 16) is filled with salt  

 water (65 pounds/ft3 ).     

 (a)  How much work is done pumping all of the water over the top edge of the tank? 

 (b)  How much work is done pumping the water to a point 3 feet above the top edge  

  of the tank? 

 (c) How long does a 1 horsepower pump take to empty the tank over the top edge  

  of the tank?   A 1/2 horsepower pump?   Which pump does more work? 
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5. A cylindrical barrel with a radius of 1 foot and a height of 6 feet is filled with oil (60 pounds/ft3 ).   

 (a)  How much work is done pumping all of the oil over the top edge of the barrel? 

 (b)  How much work is done pumping the top 1 foot of oil to a point 2 feet above the top of the barrel? 

 (c) How long will it take a 1 horsepower pump to empty the top 3 feet of oil over the top edge of the  

  barrel? 
 

6. An animal feed trough (Fig. 17) is filled with food weighing 80 pounds/ft3 .   

 How much work is done lifting all of the food over the top of the trough? 
 
 

7. How much work is done lifting the top 1 foot of food  

 over the top of the trough in Problem 6? 
 

 
 
 

8. The conical container in Fig. 18 is filled with loose grain which weighs 40 

pounds/ft3 .   

 (a)  How much work is done lifting all of the grain over the top of the cone?   

 (b)  lifting the top 2 feet of grain over the top of the cone? 
 
9. If you and a friend share the work equally in emptying the conical container in Problem 8, what depth  

 of grain should the first person leave for the second person to empty? 
 

10. The parabolic container in Fig. 19 is filled with water.  (a)  How much work is done pumping  

 the water over the top of the tank?  (b)  to a point 3 feet above the top of the tank? 
 

11. The parabolic container in Fig. 20 is filled with water.   

 (a) How much work is done pumping the water over the top  

  of the tank?   

 (b) to a point 3 feet above the top of the tank? 
 

12. The spherical tank in Fig. 21 is full of water.  How much work is done  

 lifting the water to the top of the tank? 
 

13. There are two feet of water in the bottom of spherical tank in Fig. 21.   

 How much work is done lifting the water to the top of the tank? 
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14. The student said, "I've got a shortcut for these tank problems, but it  

 doesn't always work.  I figure the weight of the liquid and multiply that  

 by the distance I have to move the middle point in the water.  It worked for 

the first 5 problems and then it didn't."   

 (a)  Does it really give the right answer for the first 5 problems?   

 (b)  How are the containers in the first 5 problems different from the 

others?   

 (c)  For which of the containers in Fig. 22 will the "shortcut" work? 
 

15. All of the containers in Fig. 23 have the same height and hold the same  

 volume of water.  Which requires  

 (a)  the most work to empty?   

 (b) the least work to empty?   

 Explain how you reached your  

 conclusions. 
 
16. All of the containers in Fig. 24 have the same height and at each  

 height  x  they all have the same cross sectional area.  Which requires  

 (a)  the most work to empty?  (b)  the least work to empty?   

 Justify your conclusions. 
 
17. Fig. 25  shows the force required to move a box along a rough surface.  How much work is done  

 pushing the box  (a) from x = 0 to x = 5 feet?  (b) from x = 3 to x = 5 feet?   
 
18. How much work is done pushing the box in Fig. 25   

 (a) from x = 3 to x = 7  feet?  (b) from x = 0  to x = 7  feet? 
 
19. A spring requires a force of  6x  ounces to stretch it  x  inches past  

 its natural length.  How much work is done stretching the spring   

 (a)  from its natural length (x = 0) to 3 inches beyond its natural length?   

 (b)  from its natural length to 6 inches beyond its natural length? 
 

20. A spring requires a force of  5x  grams to compress it  x  cm.  How much work is done  

 compressing the spring  (a)  7 cm from its natural length?  (b) 10 cm from its natural length? 
 

21. Fig. 26 shows the force needed to stretch a material that  

 does not obey Hooke's Law.  Approximately how much  

 work is done stretching it   

 (a)  from a total length of 23 cm to 33 cm?   

 (b)  from a total length of 28 cm to 33 cm?  
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22. Approximately how much work is done stretching the defective spring in the previous problem   

 (a)  from a total length of 23 cm to 26 cm?  (b)  from a total length of 30 cm to 35 cm?  

 
 
23. A  3  pound object stretches a spring 5 inches.  How much work is done stretching it 4 more inches? 
 
 
24. A  2  pound fish stretches a spring 3 inches.  How much work is done stretching it 3 more inches? 
 
 
25. A payload weighs 100 pounds at the surface of an asteroid which has a radius of 300 miles.  How much  

 work is done lifting the payload from the asteroid's surface to an altitude of (a)  100 miles?   

 (b) 200 miles?  (c)  300 miles? 
 
 
26. Calculate the amount of work required to lift you from the surface of the moon where your weight is  

 approximately 1/6 what it is on earth to an altitude of 200 miles?  (The moon's radius is approximately 

1,080 miles.) 

 
 
27. Calculate the amount of work required to lift you from the surface of the earth to an altitude  (a)  of 200  

 miles?  (b)  of 400 miles?  (c) of 1,000,000 miles?  (The earth's radius is approximately 4,000 miles.) 

 
 
28. An object located at the origin repels you with a force inversely proportional to your distance from the  

 object ( f(x) = – 
1
kx  ).  When you are 10 feet from the origin the repelling force is 0.1 pound.  How 

much work is done as you move  (a)  from  x = 20 to x = 10?  (b)  from x = 10 to x = 1?  (c)  from  x = 

1 to x = 0.1?  

 
 
29. An object located at the origin repels you with a force inversely proportional to the square of your  

 distance from the object  ( f(x) = – 
1

kx2   ).  When you are 10 feet from the origin the repelling force is 

0.1 pound.  How much work is done as you move  (a)  from  x = 20 to x = 10?  (b)  from x = 10 to x = 

1?  (c)  from  x = 1 to x = 0.1?  

 
 
30. The student said "I've got a 'work in a line' shortcut that always seems to work.  I figure the average  

 force and then multiply by the total distance.  Will it always work?"  (a)  Will it?  Justify your answer.  

(Hint: What is the formula for 'average force'? )  (b)  Is it a shortcut? 
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Work Along A Curved Path  
 
Suppose the location of a moving object is defined parametrically as  x = x(t) and y = y(t)  for  a ≤ t ≤ b,  

and the force is a function of  t, f = f(t).  Then we can represent the work done moving along the path as a 
definite integral.  Partition the time interval  [a, b]  into short subintervals.  For the interval   [ti–1, ti]: 
 
 force ≈ f(ci)  for any ci in [ti–1, ti]  
 

 distance moved ≈  (∆xi)
2 + (∆yi)

2   =  (∆xi/∆ti)
2 + (∆yi/∆ti)

2   ∆ti 
 

 work ≈ f(ci)  (∆xi/∆ti)
2 + (∆yi/∆ti)

2   ∆ti   
 

Total work ≈   ∑   {work along each subinterval }  ≈   ∑   f(ci)  (∆x/∆t)2 + (∆y/∆t)2   ∆t  
 

   →  ⌡⌠

t=a

t=b
  f(t)  (dx/dt)2 + (dy/dt)2    dt  =  total work along the path  ( x(t), y(t) ).    

 
In problems 31 – 35, find the total work along the given parametric path.  If necessary, approximate the value  

of the integral using your calculator.  f  is in pounds,  x and y are in feet, t is in minutes. 
 
31. f(t) = t .  x(t) = cos(t), y(t) = sin(t), 0 ≤ t ≤ 2π. 32. f(t) = t .  x(t) = t, y(t) = t2,  0 ≤ t ≤ 1. 
 
33. f(t) = t .  x(t) = t2, y(t) = t,  0 ≤ t ≤ 1. 34. f(t) = sin(t).  x(t) = 2t, y(t) = 3t, 0 ≤ t ≤ π.  (Fig. 27) 
 

35. f(t) = t .  x(t) = cos(t), y(t) = sin(t),  0 ≤ t ≤ 2π  (Fig. 28).  (Can you find a geometric way to calculate the 

shaded area?) 
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Section 5.3 PRACTICE  Answers 
 
Practice 1: xi = distance to top of cliff,  ∆xi  = distance lifted (length of "slice") 
 
 wi  = (130 + 10 + 2xi ) ∆xi   =  (140 + 2xi ) ∆xi   . 
  

 Total work =   ⌡⌠

x=0

x=30
  (140 + 2x)   dx  = 140x + x2 |

30

0
    

  = 4,200 + 900 = 5,100  foot.pounds. 
 

Practice 2: Total work ≈  { π(1.4)2(3.5) + π(1.6)2(4.5) + π(1.5)2(5.5) + π(1.0)2(6.5)  }.( 0.5787 ) 

  ≈  67.73  inch.ounces. 

 

Practice 3: Total work to drink top 3 inches in Example 3 is 

 

    ⌡⌠

y=3

y=6
   π( y/3 )2(0.5787)(10 – y)  dy  =  

0.5787π
9   { 

10
3   x3 – 

1
4  x4 }|

6

3
    

  =  
0.5787π

9   { 396 – 69.75 } ≈ 65.904 inch.ounces. 

Practice 4: From Example 5 we know  f(x) = 7x  so  the total work "5 inches past its natural length to 

10 inches past its natural length"  is 
  

     ⌡⌠

a

b
  f(x) dx  =  ⌡⌠

5

10
  7x  dx  =  

7x2
2    |

10

5
   =  262.5  inch–pounds. 

 Graphically, this total work is the area of the trapezoidal region bounded by  y = 7x, the  

 x–axis, and vertical lines  at  x = 5  and  x = 10. 
 

Practice 5: Be careful to do all calculations based on the amount of stretch, not just on the length. 

 f(x) = kx  and we are told that  f(5) = 2  so  2 = 5k  and  k = 2/5.  Then the total work is 

    ⌡⌠

a

b
  f(x) dx  =  ⌡⌠

2

7
  

2
5  x  dx  =  

x2
5   |7

2
   =  

45
5   =   9  inch–pounds. 

Practice 6: work = ⌡⌠

a

b
  f(x) dx  = ⌡⌠

2R

3R
  
R2P
x2   dx  = R2P (– 

1
x  ) |

3R

2R
   

 

   = R2P (– 
1

3R  ) – R2P (– 
1

2R  ) = 
RP
6    mile–pounds.  


