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5.4 MOMENTS  &  CENTERS OF MASS 
 

This section develops a method for finding the center of mass of a thin, 

flat shape –– the point at which the shape will balance without tilting  

(Fig. 1).  Centers of mass are important because in many applied 

situations an object behaves as though its entire mass is 

located at its center of mass.  For example, the work 

done to pump the water in a tank to a higher point is the same as the work to move the 

center of mass of the water to the higher point (Fig. 2), a much easier problem, if we 

know the mass and the center of mass of the water.  Also, volumes and surface areas of 

solids of revolution can be easy to calculate, if we know the center of mass of the region 

being revolved. 
 

 
POINT MASSES 
 

Before looking for the centers of mass of complicated regions, we consider point masses and systems of point 

masses, first in one dimension and then in two dimensions. 

 
Point Masses Along A Line 
 

Two people with different masses can position themselves on a seesaw  

so that the seesaw balances (Fig. 3).  The person on the right causes the  

seesaw to "want to turn" clockwise about the fulcrum,  and the person  

on the left causes it to "want to turn" counterclockwise.  If these two "tendencies" are equal, the seesaw will 

balance.  A measure of this tendency to turn about the fulcrum is called the moment about the fulcrum of 

the system, and its magnitude is the mass multiplied by the distance from fulcrum.   
 

In general, the moment about the origin, M0 , produced by a mass  m  at a 

location  x  is  m.x, the product of the mass and the "signed distance" of the 
mass from the origin  (Fig. 4).   For a system of masses  m1, m2, . . . , mn   

at locations  x1, x2, . . . , xn , respectively, 
 

 M = total mass of the system   =  ∑
i=1

n
  mi ,  and 

 M0 = moment about the origin = x1.m1 + x2.m2 + x3.m3 + . . . + xn.mn  =  ∑
i=1

n
  xi.mi . 

If the moment about the origin is positive then the system tends to rotate clockwise about the origin.  If the 

moment about the origin is negative then the system tends to rotate counterclockwise about the origin.  If 
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the moment about the origin is zero, then the system does not tend to rotate in either direction about the 

origin; it balances on a fulcrum at the origin. 
 
The moment about the point p, Mp , produced by a mass  m  at the location  x  is the signed distance of x 

from p times the mass m:  (x–p).m.  The moment about the point p produced by masses m1, m2, . . . , mn  

at locations x1, x2, . . . , xn , respectively, is 
 

 Mp = moment about the point p = (x1–p).m1 + (x2–p).m2 + . . . + (xn–p).mn  =  ∑
i=1

n
 (xi–p) .mi . 

 

The point at which the system balances is called the center of mass of the system and is written  

x–   (pronounced "x bar") .  Since the system balances at  x–  , the moment about  x–   must be zero.  Using this 

fact and properties of summation, we can find a formula for x–  . 
 

0 = Mx–   =  moment about x–    =  ∑
i=1

n
 (xi – x– ) .mi  =  ∑

i=1

n
 ( ximi  – x– mi )     

 

 =  ∑
i=1

n
   ximi  – ∑

i=1

n
 x–  mi    =  (∑

i=1

n
   ximi ) – x– (∑

i=1

n
 mi )    ,  since  x–   is a constant. 

So    (∑
i=1

n
   ximi ) = x– (∑

i=1

n
 mi )  ,  and  x–    =  

∑
i=1

n
  ximi 

∑
i=1

n
 mi 

    =  
M0
M    =  

moment about the origin
total mass    . 

 
 
 The  center of mass  of a system of masses  m1, m2, . . ., mn  at locations  x1, x2, . . ., xn   is the point  

x–    at which the system balances.  The moment of the system about   x–    is zero. 
 

     x–    = (moment about the origin) / (total mass)  =  M0 / M  =  ∑
i=1

n
   xi.mi  /  ∑

i=1

n
  mi . 

 
 

The single point mass with mass M  located at  x–   , the center of mass of the system,  produces the same 

moment about any point on the line as the whole system.  For many purposes, the mass of the entire system 

can be thought of as "concentrated at  x– ." 

 
Example 1: Find the center of mass of the first three point–masses given in Table 1. 
 
Solution: M = 2 + 3 + 1 = 6.  M0 = (2)(–3) + (3)(4) + (1)(6) = 12.   

 x–    =  M0 / M = 12/6 = 2. 
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 The first three point–masses will balance on a fulcrum located at  2. 
 
Practice 1: Find the center of mass of the last three point–masses given in Table 1. 

 
Point Masses In The Plane 
 

The ideas of moments and centers of mass extend nicely from one dimension to a system of 

masses located at points in the plane.  For a "knife edge" fulcrum located along the y–axis  (Fig. 

5), the moment of a mass  m  at the point  (x, y)  is the mass times the signed distance of the mass from the y–

axis:   

(mass)(signed distance from the y–axis) = m.x.  This "tendency to rotate about the y–axis" is called the 
moment about the y–axis, written  My :   My = m.x.  Similarly,  the mass M  at the point  (x, y)  has a 

moment about the  x–axis (Fig. 6):  Mx  = m.y .  For a system of masses  mi  located at the points  (xi , yi ) , 
 

 M  = total mass = ∑
i=1

n
  mi My =  moment about y–axis = ∑

i=1

n
  mi.xi 

 Mx =  moment about x–axis = ∑
i=1

n
  mi.yi 

 

 

The total mass M of the system, located at the center of mass  ( x–   , y–   ), has the same moment about any 
line as the entire system has about that line.  For the moment about the y–axis,  M. x–     = My  so    

x–   =  My / M .  Similarly, for the moment about the x–axis,  M. y–   = Mx  so  y–    =  Mx/M . 
  

i x
i

m
i

1       2        –3

2       3         4

3       1         6

4       5        –2

5       3         4

Table 1
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 Point Masses: Along a Line In the Plane 
 
  masses: m1 , m2 , . . . , mn    m1 , m2 , . . . , mn 

  locations: x1 , x2 , . . . , xn    (x1, y1 ), (x2, y2 ),  . . . , (xn, yn )   
 

  total mass:   M = ∑
i=1

n
  mi  M = ∑

i=1

n
  mi  

 

  moments: M0 = ∑
i=1

n
  mi .xi   My = ∑

i=1

n
  mi .xi    ,  Mx = ∑

i=1

n
  mi .yi  

 
  center of mass: x–    =  M0 / M x–    =  My / M ,   y–    =  Mx / M 
 
 
Example 2: Find the center of mass of the first three point–masses in Table 2. 
 
Solution: M = 2 + 3 + 1 = 6.  My = (2)(–3) + (3)(4) + (1)(6) = 12.  

 Mx = (2)(4) + (3)(–7) + (1)(–2) = –15. 

 x–    =  My / M = 12/6 = 2.   y–    =  Mx / M = –15/6 = –2.5 . 

 The first three point–masses will balance at the point  (2, –2.5) . 
 
Practice 2: Find the center of mass of all five point–masses in Table 2. 
 

CENTER OF MASS OF A REGION 
 

When we move from discrete point masses to whole, continuous regions 

in the plane, we move from finite sums and arithmetic to limits of 

Riemann sums, definite integrals, and calculus.  The following material 

extends the ideas and calculations from point masses to uniformly thin,  

flat plates that have a constant density given as mass per area such as 

"grams/cm2" (Fig. 7).  The center of mass of one of these plates is  

the point  (x–  , y–  )  at which the plate balances without tilting.  It turns  

out that the center of mass  (x–  , y–  )  of such a plate depends only on  

the region of the plane covered by the plate and not on its density.   

 

The point (x–  , y–  )  is also called the centroid of the region.  (Fig. 8) 

In the following discussion, you should notice that each finite sum that 

appeared in the discussion of point masses has a counterpart for these thin 

plates in terms of integrals.  
 

i x im i

1       2        –3         4

2       3         4        –7

3       1         6        –2

4       5        –2         1

5       3         4        –6

Table 2

y i
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Rectangles 
 

The rectangle is the basic shape used to extend the point mass ideas to regions.   

The total mass of a rectangular plate is the area of the plate multiplied by the 

density constant:  mass  M = {area}{density}.   

We assume that the center of mass of a thin, rectangular plate is located half  

way up and half way across the rectangle, at the point where the diagonals of  

the rectangle cross (Fig. 9).  Then the moments of the rectangle can be found  

by treating the rectangle as a point with mass  M  located at the center of mass  

of the rectangle. 
 
Example 3: Find the moments about the x–axis, y–axis, and the line x = 5   

 of the rectangular plate in Fig. 10. 
 

Solution: The density of the plate is 3 g/cm2  and the area of the plate is   

 (2 cm)(4 cm) = 8 cm2  so the total mass is  M = (8 cm2 )(3 g/cm2 ) = 24 g.   

 The center of mass of the rectangular plate is  (x–  , y–  ) = (3 , 4).   

 The moment about the x–axis is the mass multiplied by the signed distance  

 of the mass from the x–axis:   
     Mx  = (24 g).{signed distance of  (3,4) from the x–axis} = (24 g)(4 cm) = 96 g–cm. 

 Similarly,   
       My  = (24 g).{signed distance of  (3,4) from the y–axis} = (24 g)(3 cm) = 72 g–cm. 

The moment about the line  x = 5  is    

 (24 g).{signed distance of  (3,4) from the line x = 5} = (24 g)(2 cm) = 48 g–cm.  
 

To find the moments and center of mass of a plate made up of several rectangular 

regions, just treat each of the rectangular pieces as a point mass concentrated at its 

center of mass.  Then the plate is treated as a system of discrete point masses..   

The plate in Fig. 11 can be divided into two rectangular plates, one with mass 24 g 

and center of mass (1,4), and one with mass 12 g  and center of mass (3,3).  The  

total mass of the pair is  M = 36 g,  and the moments about the axes are   
 
 Mx  = (24 g)(4 cm) + (12 g)(3 cm) = 132 g–cm, and   
 
 My  = (24 g)(1 cm) + (12 g)(3 cm) = 60 g–cm. 
 
Then  x–   = My/M = (60 g–cm)/(36 g) = 5/3 cm  and  y–   = Mx/M = (132 g–cm)/(36 g) = 11/3 cm so the center 

of mass of the plate is at  (x–  , y–  )  = ( 5/3, 11/3 ). 
 



5.4 Moments  &  Centers of Mass Contemporary  Calculus 6 

Practice 3: Find the center of mass of the region in Fig. 12  . 
 

To find the center of mass of a thin plate, we will "slice" the plate into  

narrow rectangular plates and treat the collection of rectangular plates as a 

system of point masses located at the centers of mass of the rectangles.   

The total mass and moments about the axes for the system of point masses 

will be Riemann sums.  Then, by taking limits as the widths of the  

rectangles approach 0, we will obtain exact values for the mass and  

moments as definite integrals  
 
 

x–    For A Region 
 

Suppose   f(x) ≥ g(x)  on  [a,b]  and  R is a plate on the region  

between the graphs of  f  and  g  for  a ≤ x ≤ b  (Fig. 13).  If the  
interval  [a, b]  is partitioned into subintervals  [ xi–1 , xi ]  and the  

point ci  is the midpoint of each subinterval, then the slice between  

vertical cuts at  xi–1 a nd  xi  is approximately rectangular and has  

mass approximately equal to  
 
 (area)(density) = (height)(width)(density)  ≈ { f(ci) – g(ci) }( xi–1 – xi ) k = { f(ci) – g(ci) } (∆xi) k .  
 
The mass of the whole plate is approximately 
 

 M = ∑  {f(ci) – g(ci)} (∆xi) k → k ⌡⌠

a

b
  { f(x) – g(x) } dx  = k.{ area of the region between f and g }. 

 
The moment about the y–axis of each rectangular piece is   
 
 (distance from the y–axis to the center of mass of the piece).(mass) =  ci .{f(ci)–g(ci)} (∆xi) k    
 

 so My = ∑  ci { f(ci)–g(ci) } (∆xi) k   → k ⌡⌠

a

b
  x .{ f(x) – g(x) } dx . 

 

Then the center of mass of the plate is   x–    =  
My
M    =  

⌡⌠

a

b
 x { f(x) – g(x) } dx 

⌡⌠

a

b
 f(x) – g(x) dx 

   . 
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The density constant  k  is a factor of My  and of M, so it has no effect on the value of  x–  .  The value of  

x–    depends only on the shape and location of the region, and  x–    is the x coordinate of the centroid of the 

region between the graphs of  y = f(x)  and  y = g(x)  for  a ≤ x ≤ b. 
 

If the bottom curve is the x–axis,  then   g(x) = 0,  and the previous results simplify to  
 

 M =  k ⌡⌠

a

b
  f(x) dx , My = k ⌡⌠

a

b
  x .f(x) dx ,   and  x–    =  

My
M    . 

 

Practice 4: Find the x–coordinate of the center of mass of the region between  f(x) = x2  and the x–axis 

for  0 ≤ x ≤ 2.  (In this case,  g(x) = 0 .) 

 
y–    For A Region 
 

To find   y–   , the y–coordinate of the center of mass of a plate R, we  
need to find  Mx ,  the moment of the plate about the x–axis.  When   

R  is partitioned vertically (Fig. 14), the moment of each (very narrow)  strip 
about the x–axis, Mx , is  
 

 (the signed distance from the  x–axis to the center of mass of the strip).(mass of strip).   
 
Since each thin strip is approximately rectangular, the y–coordinate of the center of mass of each strip is  
approximately half way up the strip:  y–   i ≈   { f(ci)+g(ci) }/2 .  Then  
 
 Mx for the strip = (signed distance from the x–axis to the  center of mass of the strip ).(mass of strip)  
 

  = (signed distance from x–axis).( height of strip).(width of strip).(density constant) 
 

 =    
f(ci)+g(ci)

2    . ( f(ci) – g(ci) ).(∆xi ).k .   
 

The total moment about the x–axis is  Mx =  ∑
i=1

n
  

f(ci)+g(ci)
2    . { f(ci) – g(ci) } (∆xi ) k  

 

  → k ⌡⌠

a

b
 f(x)+g(x)

2   .{f(x) – g(x)} dx  = 
k
2 ⌡⌠

a

b
  {f2(x) – g2(x)} dx . 

 
If the lower curve is the x–axis,  then   g(x) = 0  and the formulas simplify to  

 M =  k ⌡⌠

a

b
  f(x) dx , Mx = k ⌡⌠

a

b
 f(x)

2   . f(x) dx =  
k
2  ⌡⌠

a

b
  f2(x) dx  ,   and  y–    =  

Mx
M    . 
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 Example 4:    Find the y–coordinate of the centroid of the region between  

           the x–axis and the top half of a circle of radius  r  (Fig. 15). 

 
 

Solution: The equation of the circle is  x2 + y2 = r2  so  f(x) = y = r2 – x2  . 
 

M = k ⌡⌠

a

b
  f(x) dx  = k ⌡⌠

–r

r
 r2 – x2  dx   

 = k 
1
2 (area of the circle of radius r)  = k 

1
2 ( πr2 )  = 

1
2  kπr2  . 

 
The region is symmetric about the y–axis so   x–   = 0.   The moment of the region about the x–axis is 
 

Mx = 
k
2  ⌡⌠

a

b
  f2(x) dx  = 

k
2 ⌡⌠

–r

r
 ( r2 – x2 ) 2 dx  = 

k
2 ⌡⌠

–r

r
  r2 – x2 dx  = 

k
2  { r2x – 

x3
3   } |

r

–r
  = 

2
3  k r3 . 

Finally,  y–   =  
 Mx 
 M    =   

 
2
3 k r3 

 
1
2 kπr2     =  

4
3  

r
π   ≈  0.4244 r .   

 
Practice 5: Show that the centroid of a triangular region with vertices (0,0), (0,h) and (b,0)  is   

 ( x–  , y–  ) =  ( b/3 , h/3 ). 
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The integral formulas for moments are given below in a form useful for actually calculating moments of 

regions between the graphs of two functions, but it is also important that you understand the process used to 

derive the formulas. 

 
  
          Point masses in the plane Region between  f  and  g   

    for  a ≤ x ≤ b  ( f≥ g )  
 

 total mass:  M =  ∑
i=1

n
  mi   M  = ⌡⌠

a

b
  {area}{density}  =  k.

⌡⌠

a

b
  f(x) – g(x)  dx 

 

 moments:  My =  ∑
i=1

n
  xi.mi  My  = ⌡⌠

a

b
  {dist. of c.m. of slice to y–axis}{mass} 

 

     =  k.
⌡⌠

a

b
  x .{ f(x) – g(x) } dx 

 

   Mx =  ∑
i=1

n
  yi.mi  Mx  = ⌡⌠

a

b
  {dist. of c.m. of slice to x–axis}{mass} 

     =  
k
2  .⌡⌠

a

b
  { f2(x) – g2(x)} dx 

 

 center of mass:    x–   =  
My
M    ,   y–   =  

Mx
M        x–   =  

My
M   ,   y–   =  

Mx
M   

 
 

Example 5: Find the centroid of the region bounded between the graphs of  y = x  and  y = x2  for 0 ≤ x ≤ 1. 
 

Solution: M = k.⌡⌠
0

1
(x – x2) dx    =  

k
6  ,  My = k.⌡⌠

0

1
 x(x – x2) dx    =  

k
12   and 

 Mx = 
k
2  .⌡⌠

0

1
 (x)2 – (x2)2 dx    =  

k
15  .  Then   x–   = My / M  =  1/2  and    y–   =  

 Mx 
 M    = 2/5 . 
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Symmetry 
 

Symmetry is a very powerful geometric concept that can simplify many mathematical and physical 

problems, including the task of finding centroids of regions.  For some regions, we can use symmetry alone 

to determine the centroid. 
 

Geometrically, a region  R  is symmetric about a line  L  if, when  R  is folded  

along the line  L, each point  of R  on one side of the fold matches up with one 

point of R on the other side of the fold  (Fig. 16). 

 
Example 6: Sketch two lines of symmetry for each region in Fig. 17. 

 

Solution: The lines of symmetry are shown in Fig.  

 18.  Every line through the center of the  

 circular region is a line of symmetry. 
 

A very useful fact about symmetric regions is that the centroid  (x–  , y–  ) 

of a symmetric region must lie on every line of symmetry of the 

region.  If a region has two different lines of symmetry, then the  

centroid must lie on each of them, so the centroid is located at the  

point where the lines of symmetry intersect. 
 

Practice 6: Locate the centroid of each region in Fig. 17. 
 
WRAP UP 
 

The purpose of this section is to illustrate again the process of going from an applied problem, to an 

approximate solution as a Riemann sum, to an exact solution represented as a definite integral. The 

emphasis is on using calculus to solve an applied problem.  However, centroids and centers of mass can 

themselves be used to solve other applied problems.  If we know the center of mass of a region, then some 

work, volume of revolution, and surface area of revolution problems become simple.  These applications of 

centroids and centers of mass are discussed very briefly in the "optional" section of the problems, and a 

physical method for determining the centroid of a region is described.  Centers of mass of regions with 

variable density are discussed in a later chapter. 
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PROBLEMS 
 
1. (a) Find the total mass and the center of mass for a system consisting of the 3 masses  

  in Table 3.   

(b) Where should you locate a new object with mass 8 so the new system has its center  

 of mass at x = 5? 

(c) How much mass should be located at x = 10 so the original system plus the new mass  

 at x = 10 has is center of mass at x = 6? 
 

2. (a) Find the total mass and the center of mass for a system consisting of the 4 masses in Table 4.   

       (b) Where should you locate a new object with mass 10 so the new system has its 

center of  

 mass at x = 6? 

       (c) How much mass should be located at x = 14 so the original system  

               plus the new mass at   x = 14 has is center of mass at x = 6? 
 

3. (a) Find the total mass and the center of mass for a system consisting of the 3 masses  

  in Table 5.   

(b) Where should you locate a new object with mass 10 so the new system has its  

 center of mass at (5, 2)? 
 
 
 

4. (a) Find the total mass and the center of mass for a system consisting of the 4  

  masses in Table 6.   

(b) Where should you locate a new object with mass 12 so the new system has its 

center of mass at (3, 5)? 
 

In problems 5 – 10, divide the flat plate in each Figure into rectangles and semicircles, calculate the mass,  

moments and centers of mass of each piece, and use those results to find the center of mass of the plate.  

Assume that the density of the plate is  1 g/cm2 .  Plot the location of the center of mass for each shape. 

(See Example 4 for the centroid of a semicircular region.) 
 
5. Fig. 19.  6. Fig. 20.  7. Fig. 21. 8. Fig. 22. 9. Fig. 23.  10. Fig. 24. 

 
 
 

Table 3

m x

2       4

5       2

5       6

 

Table 4

m x

5       1

3       7

2       5

6       2

 

2       4      3

y

Table 5

m x

5       2      4
5       6      2

 

2       2      7
3       1      0
5       3      8

1       5      4

y

Table 6

m x
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In problems 11 – 26, sketch the region bounded between the given functions on the interval and calculate 

the centroid of each region (use Simpson's rule with n = 20 if necessary).  Plot the location of the centroid 

on your sketch of the region. 
 
11. y = x  and the x–axis  for  0 ≤ x ≤ 3.  

12. y = x2  and the x–axis  for  –2 ≤ x ≤ 2. 

13. y = x2  and the line  y = 4  for  –2 ≤ x ≤ 2.  

14. y = sin(x)  and the x–axis  for  0 ≤ x ≤ π. 
 
15. y = 4 – x2  and the x–axis  for  –2 ≤ x ≤ 2. 16. y = x2  and  y = x  for  0 ≤ x ≤ 1. 
 

17. y = 9 – x  and  y = 3  for  0 ≤ x ≤ 3. 18. y = 1 – x2    and  the x–axis  for  0 ≤ x ≤ 1. 
 
19. y = x   and the  x–axis  for  0 ≤ x ≤ 9. 20. y = ln(x)  and the  x–axis  for  1 ≤ x ≤ e. 
 
21. y = ex  and the line  y = e  for  0 ≤ x ≤ 1. 22. y = x2  and the line  y = 2x  for  0 ≤ x ≤ 2. 
 
23. An empty one foot square tin box  (Fig. 25) weighs 10 pounds and its center of  

 mass is 6 inches above the bottom of the box.  When the box is full with 60 

pounds of liquid, the center of mass of the box–liquid system is again 6 inches 

above the bottom.  (a)  Write the height of the center of mass of the box–liquid 

system as a function of the x, the height of liquid in the box.   

 (b)  What height of liquid in the bottom of the box results in the box–liquid 

system having the lowest center of mass (and the greatest stability)? 
 
24. The empty can in Fig. 26 weighs 1 ounce when empty and 13 ounces when full.  Write the height  

 of the center of mass of the can–liquid system as a function of the height of the liquid in the can. 
 
25. The empty glass in Fig. 27  weighs 4 ounces when empty and 20 ounces when  

 full.  Write the height of the center of mass of the glass–liquid system as a function  

 of the height of the liquid in the glass. 
 
26. Give a practical set of directions someone could actually use to find the  

 height of the center of gravity of their body with their arms at their sides  

 (Fig. 28).  How will the height of the center of gravity change if they lift  

 their arms?  (In a uniform gravitational field such as at the surface of the  

 earth, the center of mass and center of gravity are at the same point.) 

 

 

27. Try the following experiment.  Stand straight with your back and heels against a wall.   

 Slowly raise one leg, keeping it straight, in front of you.  What happened?  Why? 
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28. Why can't two dancers stand in the position shown in Fig. 29?   
 
29. Determine the centroid of your state. 
 
30. (a) Sketch regions with exactly 2 lines of symmetry, exactly 3 lines of symmetry, and  

  exactly 4 lines of symmetry.   

 (b) If a shape has exactly two lines of symmetry, the lines can meet at right angles.  

 Do they have to meet at right angles? 
  

Work  
 

In a uniform gravitational field, the center of gravity of an object is at the same point as the center of mass 

of the object, and the work done to lift an object is the weight of the object multiplied by the distance  

that the center of gravity of the object is raised: 
 
 work = (total weight of object).(distance the center of gravity of the object is raised). 
 

In the high jump, this explains the effectiveness of the "Fosbury Flop", a technique in 

which the jumper assumes an inverted U position while going over the bar  (Fig. 30).  

In this way, the jumper's body goes over the bar while the jumper's center of gravity 

goes under it, so a given amount of upward thrust produces a higher bar cleared. 
 
If the center of gravity of an object is known, some work problems become easy. 
 
31. A rectangular box is filled to a depth of 4 feet with 300 pounds of liquid.  How  

 much work is done pumping the liquid to a point 10 feet high?  (How high is the center of gravity of 

the liquid, and how much must it be raised?) 
 

32. A cylinder is filled to a depth of 2 feet with 40 pounds of liquid.  How much work is done pumping the 

liquid to a point 7 feet high?  (How high is the center of gravity of the liquid, and how much must it be 

raised?) 
 
33. A sphere of radius 1 foot is filled with  250 pounds of liquid.  How much work is done pumping the  

 liquid to a point 3 feet above the top of the sphere?  (Draw a picture.) 
 
34. A sphere of radius 2 foot is filled with 2000 pounds of liquid.  How much work is done pumping the  

 liquid to a point 5 feet above the top of the sphere? 
 

If the amount of work is already known, it can be used to find the height of the center of gravity. 
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Theorems of Pappus  
 

When location of the center of mass of an object is known, the theorems of Pappus make some volume and 

surface area calculations very easy. 

 
Volume of Revolution: 
 

If  a plane region with area A  and centroid  (x–  , y–  )   

 is revolved around a line in the plane which does not go through the region (touching the boundary is 

alright),  

 

then  the volume swept out by one revolution is the area of the region times the distance traveled by the 

centroid  (Fig. 31):   
 

Volume about line L =  A .2π.{ distance of  (x–  , y–  )  from the line L }. 

Volume about x–axis =  A.2π. y–  .    Volume about y–axis =  A.2π. x–  . 
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Surface Area of Revolution 

 

If  a plane region with perimeter P  and centroid of the 

edge  (x–  , y–  )  is revolved around a line in the plane 

which does not go through the region (touching the 

boundary is alright),  

 

then  the surface area swept out by one revolution  

 is the perimeter of the region times the distance  

 traveled by the centroid (Fig. 32):   

 

Surface area about line L = P.2π.{ distance of  (x–  , y–  )  from the line L }. 

Surface area about x–axis =  P. 2π. y–  . Surface area about y–axis =  P. 2π. x–  . 
 

35. The center of a square region with 2 foot sides is at the point  (3,4).  Use the Theorems of Pappus to 

find the volume and surface area swept out when the square is rotated   (a)  about the x–axis,   

 (b)  about the y–axis, and (c) about the horizontal line  y = 6. 
 
36. The lower left corner of a rectangular region with an  8 inch base and a 4 inch height is at the point   

 (3,5).  Use the Theorems of Pappus to find the volume and surface area swept out 

when the rectangle is rotated  (a) about the x–axis,  (b) about the y–axis, and (c) 

about the line  y = x + 5. 
 
37. The center of a circle with radius 2 feet is at the point  (3,5).  Use the Theorems of  

 Pappus to find the volume and surface area swept out when the circular region is 

rotated   (a)  about the x–axis,  (b)  about the y–axis, and  

 (c) about the vertical line  x = 6. 
 
38. The center of a circle (Fig. 33)  with radius  r  is at the point  (0, R).  Use the  

 Theorems of Pappus to find the volume and surface area swept out when the  

 circular region is rotated about the x–axis. 
 

39. Find the volumes and surface areas swept out when the rectangles in 

Fig. 34 are rotated about the line  L.  (Measurements are in feet.) 
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Physically Approximating Centoids of Regions 
 

The centroid of a region can be approximated experimentally, even if the region, such as a state or country, 

is not described by a formula. 
 

Cut the shape out of a piece of some uniformly thick material such as paper and pin an edge to a wall.  The 

shape will pivot about the pin until its center of mass is directly below the pin (Fig. 35) so the center of 

mass of the shape must lie directly below the pin, on the line connecting the pin with the 

center of mass of the earth.  Repeat the process using a different point near the edge of the 

shape and a different line can be found.  The center of mass also lies on the new line, so  

we can conclude that the centroid of the shape is located where the two lines intersect, the 

only point located on both lines  (Fig. 36).  It is a good idea to pick a third point near the 

edge and plot a third line.  This line should also pass through the point of intersection of the 

other two lines.   
 

The "population center" of a region can be physically approximated 

by attaching weights proportional to the populations of the different areas  

and then repeating the "pin" process with this weighted model.  The  

point on the new model where the lines intersect is the approximate "population 

center" of the region. 
 

 
 
 
 
Section 5.4 PRACTICE  Answers 
 
 
 
Practice 1: M = 1 + 5 + 3 = 9.  M0 = (1)(6) + (5)(–2) + (3)(4) = 8.   

 x–    =  M0 / M = 8/9  

 The last three point–masses will balance on a fulcrum located at  x = 8/9. 
 
 

Practice 2: M = 2 + 3 + 1 + 5 + 3 = 14.   
 My = (2)(–3) + (3)(4) + (1)(6) + (5)(–2) + (3)(4) = 14.  

 Mx = (2)(4) + (3)(–7) + (1)(–2) + (5)(1) + (3)(–6) = –28. 

 x–    =  My / M = 14/14 = 1.   y–    =  Mx / M = –28/14 = –2 . 

 The five point–masses balance at the point  (1, –2) . 
 

 

 

i x
i

m
i

1       2        –3

2       3         4

3       1         6

4       5        –2

5       3         4

Table 1
 

i x im i

1       2        –3         4

2       3         4        –7

3       1         6        –2

4       5        –2         1

5       3         4        –6

Table 2

y i
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Practice 3: There are several ways to break the region in Fig. 12 into "easy"  

 pieces –– one way is to consider the four 2–by–2 cm squares.   

 The cm of each square is located at the center of the square (at (2,2), (4,2), (6,2), and (4,4) ), 

and each square has mass  (4 cm2)(5 g/cm2) = 20 g. 

      M = 4(20 g) = 80 g.   
 My = 2(20) + 4(20) + 6(20) + 4(20) = 320 g.cm 

 Mx = 2(20) + 2(20) + 2(20) + 4(20) = 200 g.cm 

 Then  x–    =  My / M = 
320 g.cm

80 g    =  4 cm  and   

   y–    =  Mx / M =  
200 g.cm

80 g    =  2.5 cm  .   

 The center of mass is ( 4, 2.5 ) . 
 

Practice 4: M =  k ⌡⌠

a

b
  f(x) dx  = =  k ⌡⌠

0

2
  x2 dx  = 

8
3  k  , My = k ⌡⌠

a

b
  x .f(x) dx = k ⌡⌠

0

2
  x .x2 dx = 4k.   

 Then   x–    =  My / M = 
4k

 
8
3 k

   = 1.5 . 

Practice 5: The triangular region is shown in Fig. 36 :  f(x) = h – 
h
b  x  for  0 ≤ x ≤ b. 

 

 M = k ⌡⌠

a

b
  f(x) dx  = k ⌡⌠

0

b
 ( h – 

h
b x )  dx  = k { hx – 

h
b 

1
2  x2 }|

b

0
   

  = k{ hb – 
h
b 

b2
2   } =  

k
2  hb . 

 

 My = k ⌡⌠

a

b
  x .f(x) dx =  k ⌡⌠

0

b
  x.( h – 

h
b  x ) dx  = k { h 

x2
2   – 

h
b 

x3
3   )|

b

0
   

  = k{ h
b2
2   – 

h
b 

b3
3   } =  

k
6  hb2 . 

 

 Mx = 
k
2  ⌡⌠

a

b
  f2(x) dx  =  

k
2 ⌡⌠

0

b
 ( h – 

h
b x ) 2 dx  = 

kh2
2   { x – 

2
b 

x2
2   + 

1
b2 

x3
3   }|

b

0
   

 =  
kh2

2   { b – b + 
b
3  } =  

k
6  h2b2 . 

 

 Finally,   x–    =  
My
M   =  

k
6 hb2

k
2 hb

   =  
b
3    and    y–   =  

 Mx 
 M    =  

k
6 h2b2

k
2 hb

   =  
h
3   so  cm = (b/3, h/3) . 

 
 

Practice 6: The centroid of each region in Fig. 18 is located at the point where the lines of symmetry intersect. 

Fig. 18


