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6.1 THE DIFFERENTIAL EQUATION  y' = f(x) 
 

This section introduces the basic concepts and vocabulary of differential equations as they apply to the 

familiar problem, y' = f(x).  The fundamental notions of a general solution of a differential equation, the 

particular solution of an initial value problem, and a direction field are introduced here and are used in later 

sections as we examine more complicated differential equations and their applications. 

 
Solving  y' = f(x) 
 

The solution of the differential equation  y' = f(x)  is the collection of all antiderivatives of f,  y = ∫ f(x) dx.  

If  y = F(x)  is one antiderivative of  f,  then we have essentially found all of the antiderivatives of  f  since 

every antiderivative of  f  has the form  F(x) + C  for some value of the constant  C.  If  F  is an 

antiderivative of  f, the collection of functions  F(x) +C  is 

called the general solution of  y' = f(x).  The general solution 

is a whole family of functions. 
 

Example 1: Find the general solution of the differential  

 equation  y' = 2x + e3x . 
 

Solution:   y = ∫ 2x + e3x dx  = x2 + 
1
3  e3x + C . 

 
Practice 1: Find the general solutions of the differential  

 equations  y' = x + 
3

x+2    and  y' =  
6

x2 + 1
   . 

 
Direction Fields 
 
 

Geometrically, a derivative gives the slope of the tangent line to a curve, so the differential equation  

y' = f(x)  can be interpreted as a geometric condition:  at each point  (x,y)  on the graph of  y,  the slope of 

the tangent line is  f(x).  The differential equation  y' = 2x  says that at each point  (x,y)  on the graph of  y,  

the slope of the line tangent to the graph is 2x:  if the point  (5,3) is on the graph 

of  y  then the slope of the tangent line there is  2.5 = 10.  This information can 

be represented graphically as a direction field for  y' = 2x.  A direction field for  

y' = 2x  is a a collection of short line segments through a number of sample 

points (x, y)  in the plane  (Fig. 2), and the slope of the segment through  (x,y)  is  

2x.  Figures 3a and 3b  show direction fields for the differential equations  y' = 

3x2  and  y' = cos(x).  For a differential equation of the form  y' = f(x), the values 

of  y'  depend only on  x  so along any vertical line (for a fixed value of  x)  all 

the line segments have the same  y', the same slope, and they are parallel (Fig. 4).   
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If  y'  depends on both x and y, then the slopes of the line segments will depend on both  x  and y, and the 

slopes along a vertical line can vary.  Fig. 5  shows a direction field for the differential equation  y' = x – y  

in which  y '  is a function of both  x  and y. 
 

 A direction field of a differential equation  y'= g(x,y)  is a collection 

  of short line segments with slopes  g(x,y)  at the points  (x, y). 
 

Practice 2: Construct direction fields for  (a) y'= x + 1  and   

 (b) y' = x + y  by sketching a short line segment with slope  y'  at each point  

(x, y)  with integer coordinates between  –3  and  3. 
 

If the function  f  in the differential equation  y' = f(x)  is given graphically, an 

approximate direction field can be constructed. 
 

Example 2: Construct a direction field for the differential equation   

  y' = f(x)  for the  f  shown in Fig. 6. 
 

Solution: If  x = 0, then  y' = f(0) = 1  so at every  

 point on the vertical line  x = 0 (the y–axis) the  

 line segments of the direction field have slope   

 y' = 1.  Several short segments with slope  1  are  

 shown along the y–axis in Fig. 7.  Similarly, if   

 x = 1, then y' = f(1) = 0  so the line segments of  

 the direction field have slope  y' = 0  at every  

 point on the vertical line  x = 1.  The line 

 segments along each vertical line are parallel. 
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Practice 3: Construct a direction field for the differential equation  y' = f(x)   

 for the  f  shown in Fig. 8. 
 

Once we have a direction field for a differential equation, we can sketch several 

curves which have the appropriate tangent line slopes (Fig. 9).  In that way we  

can see the shapes of the solutions even if we do not have formulas for them.  

These shapes can be useful for estimating which initial conditions lead to linear 

solutions or periodic solutions or solutions with other properties, and they can  

help us understand the behavior of machines and organisms.   

 

Direction fields are tedious to plot by hand, but computers 

and calculators can plot them quickly.  Programs are available 

for plotting direction fields on graphic calculators. 

 
Initial Conditions and Particular Solutions 
 
An initial condition   y(x0) = y0  specifies that the solution  y  

of the differential equation should go through the point  (x0, 

y0)  in the plane.  To solve a differential equation with an initial condition, we typically use integration to 

find the general solution  (the family of solutions which contains an arbitrary constant), and then we use 

algebra to find the value of the constant so the solution satisfies the initial condition.  The member of the 

family that satisfies the initial condition is called a particular solution.  
 

Example 3: Solve the differential equation  y' = 2x  with the initial condition  y(2) = 1. 
 
 
Solution:  The general solution is  y = ∫ 2x dx = x2 + C.  Substituting the   values  x0 = 2 and y0 = 1   

 into the general solution,  1 = (2)2+C  so  C = –3.  Then the solution  

 we want is  y = x2 – 3. (A quick check verifies that y' = 2x and y = 1   

 when x = 2.)  Fig. 10 shows the direction field  y' = 2x  and the  

 particular solution which goes through the point  (2,1), y = x2 – 3.  

 The solution of the differential equation which  

 satisfies the initial condition y(0) = – 1  is also shown. 
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Example 4: If a ball is tossed upward with a velocity of 100 

feet/second, its height y  at time  t  satisfies the differential equation  y' 

= 100 – 32t.  Sketch the direction field for y  (0≤ t ≤4)  and then sketch 

the solution that satisfies the initial condition that the ball is 200 feet 

high after 3 seconds. 
 
Solution: y = ∫ 100 – 32t dt = 100t – 16t2  + C.   

 When  t=3, y=200  so  200 = 100(3) – 16(3)2 + C = 156 + C   

  and  C = 200 – 156 = 44.   

 The particular function we want is  y = 100t – 16t2  + 44.  The 

direction field and the particular solution are shown in Fig. 11. 
 
Practice 4: Find the solution of  y' = 9x2 – 6sin(2x) + ex   

 which goes through the point  (0,6). 
 

Example 5: A direction field for  y' = x – y  is shown in Fig. 12.  Sketch the 

three particular solutions of the differential equation   

 y' = x – y  which satisfy the initial conditions  y(0) = 2,  

 y(0) = –1, and y(1) = –2.   
 
Solution: The three particular solutions are shown in Fig. 12. 

 

PROBLEMS 
 

In problems 1 – 6, the direction field of a differential equation is shown.   

Sketch the solutions which satisfy the given initial conditions. 
 
1. Fig. 13.  The initial conditions are   

 (a)  y(0) = 1, (b)  y(1) = –2, and  (c)  y(1) = 3. 
 
2. Fig. 13.  The initial conditions are   

 (a)  y(0) = 2, (b)  y(1) = –1, and   

 (c)  y(0) = –2. 
 
 
3. Fig. 14.  The initial conditions are   

 (a)  y(–2) = 1, (b)  y(0) = 1, and  (c)  y(2) = 1. 
 
4. Fig. 14.  The initial conditions are   

 (a)  y(–2) = –1, (b)  y(0) = –1, and  (c)  y(2) = –1. 
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5. Fig. 15.  The initial conditions are  (a)  y(0) = –2, (b)  y(0) = 0, and   

 (c)  y(0) = 2.  What happens to these three solutions for large values of  x ? 
 

6. Fig. 15.  The initial conditions are  (a)  y(2) = –2, (b)  y(2) = 0, and  (c)   

 y(2) = 2.  What happens to these three solutions for large values of  x ? 
 
 
 
 

In problems 7 – 12,  (i)  sketch the direction field for each differential equation  and  (ii)  without solving 

the differential equation,  sketch the solutions that go through the points  (0,1)  and  (2,0) .  
 
7. y' = 2x . 8. y' = 2 – x . 
 
9. y' = 2 + sin(x) . 10. y' = ex . 
 
11. y' = 2x + y . 12. y' = 2x – y . 
 

In problems 13 – 18, (a) find the family of functions which solve each differential equation, and (b) find the 

particular member of the family that goes through the given point. 
 
13. y' = 2x – 3  and  y(1) = 4 . 14. y' = 1 – 2x  and  y(2) = –3 . 
 
15. y' = ex + cos(x)  and  y(0) = 7 . 16. y' = sin(2x) – cos(x)  and  y(0) = – 5 . 
 

17. y' =   
6

2x + 1   +  x    and  y(1) = 4 . 18. y' = ex/(1 + ex )  and  y(0) = 0 . 
 

Problems 19 and 20 concern the direction field  

(Fig. 16)  that comes from a differential 

equation called the logistic equation  ( y' =y(1 

– y) , that is used to model the growth of a 

population in an enviroment with renewable 

but limited resources.  It is also used to 

describe the spread of a rumor or disease 

through a population. 
 

19. Sketch the solution that satisfies the initial condition  P(0) = 0.1.  What letter of the alphabet does this 

solution look like?  
 
20. Sketch several solutions that have different initial values for P(0).  What appears to happen to all of  

 these solutions after a "long time"  (for large values of x)? 
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In problems 21 and 22, the figures show the direction of surface flow at different locations along a river.  

Sketch the paths small corks will follow if they are put into the river at the dots in each figure.  (Since the 

magnitude and the direction of flow are indicated, each diagram is called a vector field.)  Notice that corks 

that start close to each other can drift far apart and corks that start far apart can drift close. 
 
21. Fig. 17 . 22. Fig. 18 . 

 

 
 
 
 
 
 
MAPLE 
 
Many of the direction fields in this section were created using a computer program called MAPLE.   

The commands below were used to create Fig. 12 

 
with(DEtools):        This loads a library needed for the DEplott command. 
 
DEplot( diff( y(x),x) = x - y(x), y(x), x=-3..3, y=3..3, dirgrid=[11,11], color=red, arrows=line, thickness=2, 

[[y(0)=-1], [y(0)=2],[ y(2)=0]], linecolor=blue); 
 
 
Plots the direction field for  y ‘ = x – y 
for  -3 ≤ x ≤ 3  and  -3 ≤ y ≤ 3 
using an 11 by 11 grid 
of red arrows with thickness 2. 
    (arrows can be set equal to “small”, “medium”, “large” or “line,” 
 
It includes the solution curves for the initial conditions  y(0)=-1, y(0)=2  and  y(2)=0  in blue. 
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Section 6.1 PRACTICE  Answers 
 

Practice 1: (a) y ' = x +  
3

x + 2  .  y = ∫ x +  
3

x + 2  dx = 
1
2  x2 + 3. ln|x + 2| + C. 

 (b) y ' = 
6

x2 + 1
  .  y = ∫  

6
x2 + 1

   dx =  6.arctan(x)  +  C. 

 
 
Practice 2: (a) x y'= x + 1   (See Fig. 19) 

 –3 –2 
 –2 –1 
 –1 0 
 0 1 
 1 2 
 2 3 
 3 4 

y ' does not depend  
on the value of y. 

  

 

 (b) y ' = x + y    (See Fig. 20) 

  y = –3 y = –2 y = –1 
 x y ' = x–3 x y ' = x–2 x y ' = x–1 
 –3 –6 –3 –5 –3 –4 
 –2 –5 –2 –4 –2 –3 
 –1 –4 –1 –3 –1 –2 
 0 –3 0 –2 0 –1 
 1 –2 1 –1 1 0 
 2 –1 2 0 2 1 
 3 0 3 1 3 2 

 

 

 

Practice 3: The direction field for the differential equation   

 y' = f(x)  for  f  (given in Fig. 8)  is shown in Fig. 21. 
 
 
Practice 4: y ' = 9x2 – 6sin( 2x ) + ex   and  y(0) = 6. 

 y =  ∫  9x2 – 6sin( 2x ) + ex dx  

  =  3x3 + 3cos(2x) + ex  + C. 

 6 = y(0) = 3(0)3 + 3cos(2.0) + e0  + C = 0 + 3 + 1 + C   

  so  C = 6 – 3 – 1 = 2  and  

 y =  3x3 + 3cos(2x) + ex  + 2. 
 

 


