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6.3 GROWTH, DECAY, AND COOLING 
 
A population of people, a chunk of radioactive material, money in the bank, and a cup of hot soup all share a 

common trait.  In each situation, the rate at which an amount is changing is proportional to the amount:  
 
• the number of births per year is proportional to the number of people in the population 
 
• the number of atoms per hour that release a particle is proportional to the number of atoms present 
 
• the number of dollars of interest per year is proportional to the amount of money in the bank account 
 
• the number of degrees the soup cools per minute is proportional to the temperature difference between  

  the soup and the air. 
 

All of these situations can be modeled with separable differential equations we solved in Section 6.2.  In 

fact, the first three can be modeled with the same differential equation:  y' = ky.  The cooling soup uses   

y' = k(y–a) .  In this section our focus is on using the equations and their solutions to answer questions 

about applied problems.  The applications here all involve the rate of change of some quantity with respect 

to time and the notation is usually changed so the independent variable is time  t  (instead of x)  and the 

dependent quantity is  f(t)  (instead of y).  The statement  y' = ky  then becomes  f '(t) = k.f(t), and the 
solution  y = y0 .ekx  becomes  f(t) = f(0).ekt  .   

 
  

 Theorem: If the rate of change of  f  is proportional to the value of  f, f '(t) = k.f(t), 
 
  then f(t) = f(0).ekt  . 
   
 

When  k  is positive,  f(t) = f(0).ekt  represents exponential growth, and  k  

is called the growth constant.  When  k  is negative, f(t) = f(0).ekt  

represents exponential decay, and  k  is called the decay constant.  Fig. 1  

shows the graphs of  f(t) = ekt  for several values of  k. 

 
Exponential Growth 
 

When the initial population  f(0)  and the growth constant  k  are known, we 

can write an equation for  f(t),  the population at any time  t, and use it to 

answer questions about the population. 
 
Example 1: The number of bacteria on a petri plate  t  hours after the experiment starts is  2000.e0.0488t  . 

 (a) How many bacteria are on the plate after 1 hour?  2 hours? 

 (b) What is the percentage growth of the population from t=0 to t=1?  From t=1 to t=2? 

 (c) How many hours does it take for the population to reach 3000?   To double? 
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Solution: The population after  t  hours  is  f(t) = 2000.e0.0488t  (Fig. 2) 

 

 (a) f(1) = 2000.e0.0488(1) = 2000.e0.0488 ≈ 2000(1.0500) = 2100.   

  f(2) = 2000.e0.0488(2) = 2000.e0.0976 ≈ 2000(1.1025) = 2205. 
 
 (b) Percentage growth from t=0 to t=1  is   
  

  
f(1) – f(0)

f(0)    .100 = 
2100 – 2000

2000   .100 = (0.05)(100) = 5 %. 
 

  Percentage growth from t=1 to t=2  is  
f(2) – f(1)

f(1)    .100 = 
2205 – 2100

2100   .100 = (0.05)(100) = 5 %. 

 During the first hour, the population grows by 100 and during the second hour it grows by 105, 

but the percentage growth during each hour is a constant 5 %. 
 

(c) We can find the value of  t  so  3000 = f(t) = 2000.e0.0488t  by  dividing each side by 2000:

 1.5 = e0.0488t   
 
taking logarithms to get t out of the exponent: ln(1.5) = ln( e0.0488t ) = 0.0488t ln(e) = .0488 t 
 

and dividing by 0.0488 to solve for t:  t = 
1

0.0488  ln(1.5) ≈ 
1

0.0488 ( 0.4055 )  ≈ 8.31 hours. 
 

 Since the original population is 2000, the doubled population is 4000.  We can find the value  

 of  t  so that  4000 = f(t)  = 2000.e0.0488t  by dividing each side by 2000 and taking logarithms:  

 ln(2) = ln( e0.0488t ) = 0.0488t ln(e) = 0.0488 t .  Then  t = 
ln(2)

0.0488   ≈  0.693
0.0488   ≈ 14.2 hours. 

 
  The bacteria population will double every 14.2 hours, the doubling time for this population.  

 

Practice 1: Use  f(t) =  2000.e0.0488t  from Example 1. (a)  What is the population when t=5?    

 (b)  How long until the population is 5000?  (c)  How long until the population triples? 
 

If the value of the growth constant k is not given, usually our first step is to use the given information to 

find it.  Once we know the population at two different times, we can find k. 

 

Example 2: The population of a community was 22,000  in 1980 and   

 26,800  in 1990.  Assuming that the community maintains the same  

 rate of exponential growth,  (Fig. 3) 

 (a)  what is a formula for the population  t  years after 1980?  

 (b)  what is the annual percentage rate of growth of the community? 
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Solution: Let  t represent the number of years since 1980, so 1980 corresponds to t=0 and 1990 corresponds  

  to t=10.  Then  f(0) = 22,000 ,  f(10) = 26,800 ,  and  f(t) = f(0).ekt  = 22,000 .ekt  . 
 

(a) To find a formula for  f(t),  we can use the 1990 (t=10)  population to find the value for  k: 
 
  26,800 = f(10) = 22,000 .ek(10)  so  1.218 = ek(10)   and 
 

 k = 
1
10   ln( 1.218 ) ≈ 

1
10  (0.197 )  = 0.0197 .  Then  f(t) = 22,000.e(0.0197)t  . 

 

(b) f(0) = 22,000  and  f(1) = 22,000.e(0.0197)1  ≈ 22,000 ( 1.01989 ) = 22,437.58  so the annual  
 

 percentage increase was   
f(1) – f(0)

f(0)   .  100 = 
437.58
22000   .  100  ≈  1.989 % . 

 
Practice 2: An experiment was begun by releasing 12,000 free neutrons into a material, and 2 seconds  

 later, the material contained  18,000 free neutrons.  Assuming the number of free neutrons grows 

exponentially, (a)  determine a formula for the number present  t  seconds after the beginning of the 

experiment,  and  (b)  determine how long it takes for the number of free neutrons to double. 
 

Compound interest is another example of exponential growth. 
 
Example 3: How long does it take $1000  to double at an effective annual rate of return of 5%?  10% ? 

 (This assumes that the yield is computed and compounded continuously.) 
 

Solution:  Let  f(t)  be the amount of money after  t  years.  Then  f(0) = 1000  and  f(t) = 1000.ekt . 
 

5%:  After 1 year, the investment will be  $1000 + (.05)($1000) = $1050  so  f(1) = 1050 = 1000.ek⋅1  . 

 Solving for k,   1.05 = ek  so  k = ln( 1.05 )  and  f(t) = 1000.eln( 1.05 )t  .  Solving 
   

 2000 = 1000.eln( 1.05 )t  for t  gives  t =  
ln( 2 )

ln( 1.05 )   ≈ 14.2  years. 
 
10%:  After 1 year the investment will be $1100.  Then  k = ln( 1.10 )  so  f(t) = 1000eln( 1.10 )t   
  

 and the doubling time is  t =  
ln( 2 )

ln( 1.10 )   ≈ 7.27 years. 
 

Practice 3: How long does it take an investment to  

 double if the rate of return is 12%?  
 

When we know the growth constant  k, the doubling time  

is simple to find.  If  f(t) = f(0).ekt  then  the doubling time is the time  t  so that  2f(0) = f(t) = f(0).ekt .  

Then   
 

  2 = ekt  and  ln( 2 ) = kt  so  t =  
ln( 2 )

k   . 
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Doubling Time: If  f(t) = f(0).ekt  , then the doubling time is  t =  
ln( 2 )

k    .   (Fig. 4) 
 

An important aspect of exponential growth is that the doubling time depends only on the growth 

constant  k  and not on the population or the starting time.  The previous Example and Practice problem 

illustrate the basis for a "rule" used in business: 
 

Rule of 72: An investment with an annual rate of return of  R%  takes about   
72
R    years to double in value. 

 

Table 1 shows the exact values for doubling times obtained using 

exponential growth with those obtained using the Rule of 72.  The 

Rule of 72 gives good approximations and is easy to use.  Problem 

12 asks you to show why this "rule" works, and problem 13 asks 

you to find a "rule" for an investment to triple in value. 

 
Exponential Decay 
 

Exponential decay occurs when the rate of loss of something is 

proportional to the amount present.  One example of exponential 

decay is radioactive decay:  the number of atoms of a radioactive 

substance that "decay"  (split into nonradioactive atoms and release particles) during a short time is 

proportional to the number of radioactive atoms present.  Exponential decay (Fig. 5) also models how 

quickly some medicines are absorbed from the bloodstream and even how quickly you forget calculus.  

Exponential decay calculations are similar to those for growth, but the value of  k  is negative and we talk 

about "half–life", the time for half of the material to decay or be absorbed, instead of the doubling time.  

Table 2 shows the half–lives of some isotopes. 
 

!!                         !Doubling Time (years)

!Rate of return (%)   !Exact !   Rule of 72

!!         4!!               17.7!!      18.0

!!         5!               !14.2!!      14.4

!!         6               !!11.9!      !12.0

!!         7!!               10.2!!      10.3

!!         9!!                 8.0!       !8.0

!!        10!                !7.3!       !7.2

!        !12                !!6.1!!       6.0

!!        20!                !3.8!       !3.6

Table 1:  Time for an investment to 

             double in value
 

 !Element!        Half–life!

!!iodine–131!          8.07 days

  strontium–90!       29 years

 !argon–39!            265 years

  carbon–14!           5700 years!

! plutonium–239!    24,400 years

 !

! 

 Table 2:  Half–lives of some isotopes

uranium–238        4.51 x 10   years
5

uranium–234!       2.47 x 10   years
9
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Example 4: You started with 10 g of radioactive Q, but after 6 days of  

  decay there were only 3 g left (Fig. 6).   

 (a)  Find a formula for the amount of Q present after  t  days.   

 (b)  What is the half–life of Q? 
 
Solution: Let  f(t) be the amount of  Q  present after  t  days.   

 Then  f(t) = f(0).ekt   = 10.ekt  . 

(a) 3 = f(6) = 10.ek6   so  0.3 = e6k  and  ln( 0.3 ) = 6k.  Then   

  k = 
1
6   ln(0.3) ≈  –0.2007  and   f(t) = 10.e(–0.2007)t  . 

 
(b) The half–life is the time required for half of the material to decay, so we need to solve  
  

 5 = 10.e(–0.2007)t  for  t.   Dividing by 10 and then taking logarithms, 
 

  1/2 = e(–0.2007)t   and  ln( 1/2 ) = (– 0.2007)t  so  t =  
ln( 0.5 )
– 0.2007   ≈  3.45 days. 

 

Carbon–14 Dating:  If the half life of a substance is known and we know how much of the substance is 

present in a sample now, we can determine how much was present at some past time or determine how long 

ago the sample contained a particular amount of the substance.  Radioactive carbon–14 with a half–life of 

about 5700 years is used in this way to estimate how long ago plants and animals lived.  When a plant is alive 

it continually exchanges carbon–14 and ordinary carbon with the atmosphere so the ratio of carbon–14 to 

nonradioactive carbon stays relatively constant.  But once the plant dies, this exchange stops.  The ordinary 

carbon remains in the material, but the carbon–14 decays so the ratio of carbon–14 to ordinary carbon 

decreases at a known rate.  By measuring the ratio of carbon–14 to ordinary carbon in a sample of plant 

tissue, scientists can determine how long ago the plant died and obtain an estimate for the age of the sample. 

 
 
Example 5: The amount of carbon–14 in plant fiber of a  

woven basket is 20% of the amount present in a living plant.  

Estimate the age of the basket.  (Fig. 7) 

 
Solution: Let  f(t)  represent the amount of carbon–14  in a  

 sample that is  t  years old.  Since we know the 

 half–life is 5700 years, then   

 f( 5700 ) = f(0).ek⋅5700  = 
1
2  f( 0 )  so  ek⋅5700  = 

1
2   .   

 Solving for k,   

 5700 k = ln( 1/2)  and  k =  
ln( .5 )
5700    ≈  – 0.0001216  so  f(t) = f(0).e(–0.0001216)t  . 

 Since  20% of the carbon–14 remains in our sample, we want the value of  t  so that 
 



6.3 Growth, Decay, and Cooling Contemporary  Calculus  6 

  0.20.f(0) = f(t) = f(0).e(–0.0001216)t  . 
 

 Dividing by  f(0), taking logarithms, and solving for t, we get  t =  
ln( 0.2 )

–0.0001216   ≈  13,235 years.  
 

 The basket was made from a plant that died about  13,200  years ago.  (Does that mean the basket was 

made about 13,200 years ago?)  This dating method is very sensitive to small changes in the measured 

amount of carbon–14. 
 

When the decay constant  k  is known, the half–life is simple to find.  If  f(t) = f(0).ekt  then  the half–life is  
 

the time  t  so that  
1
2  f(0) = f(t) = f(0).ekt .  Solving for  t,  

we have   t =  
ln( 1/2 )

k   . 
 

Half–life: If  f(t) = f(0).ekt , then the  
 

 half–life is  t =  
ln( 1/2 )

k    .   (Fig. 8) 
 

The half–life depends only on the decay constant  k  and not 

on the amount of material we have.  If the  

half–life is known, then   k =  
ln( 1/2 )
half–life   . 

 

Practice 4: The half–life of an isotope is 8 days.  Write a formula for the amount of the isotope present  

t  days after you began with 10 mg. 

 

The rate at which many medicines are absorbed from the blood is proportional to the concentration of the 

medicine in the blood:  the higher the concentration in the blood, the faster it is absorbed from the blood. 
 

Example 6: Suppose medicine M has an absorption (decay) constant of  –0.17  (determined experimentally), 

and that the lowest concentration of  M  that is "effective"  is 0.3 mg/l (milligrams of M per liter of blood).  

If a patient who has 8 liters of blood is injected with  20 mg of  M, how long will the  M  be effective? 
 

Solution: Since the patient is starting with  20 mg of  M  in 8 liters of blood, the initial concentration is  
 

20 mg/8 l = 2.5 mg/l .  Then the amount of  M  at time  t hours is  f(t) = 2.5e–0.17t , and we want to find  t   
 

so that  f(t) = 0.3 mg/l :   0.3 = 2.5e–0.17t   so  t = 
1

–0.17   ln( 0.3/2.5 ) ≈ 12 .5  hours. 
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Many medicines have a "safe and effective" range of concentrations (Fig. 9), and the goal of a schedule for 

taking the medicine is to keep the concentration near the middle of that range.  Taking doses too close together 

in time can result in an overdose (Fig. 10), and taking them too far apart is eventually ineffective. 

 

 

Newton's Law of Cooling/Warming 
 

Some rates of change depend on how far a value is from a fixed value.  The rate at which a hot cup of soup 

cools  (or a cool cup of milk warms up)  is proportional to the difference in temperature between the soup 

and the surrounding air.  This principle is called Newton's Law of Cooling/Warming. 

 
  
 Newton's Law of Cooling/Warming 
 
 If   f(t)  is the temperature at time  t  of an object in an atmosphere with temperature  a,  
 

 then  the rate of change of  f  is proportional to the difference between  f  and  a,  f '(t) = k{ f(t)–a }, 
 

   and   f(t) = a + {f(0) – a}.  ekt  . 
    

 

The statement that the rate of change is proportional to the 

difference,  f '(t) = k{ f(t) – a } , is a result from physics.   

The differential equation is separable, and was solved in 

the last section.  Figure 11  shows some functions that 

have different initial values and that satisfy the differential  

equation  f'(t) = f(t) – 5. 
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Example 7: A cup of hot soup is in a room with a temperature of 

70° F.  When first poured, the soup was 200° F, and 5 minutes later it 

was 150° F  (Fig. 12).   

 (a)  Find an equation for the temperature  f  of the soup at any time t.    

 (b)  How long does it take the 200° F soup to cool to 100° F?   

 (c)  What will the temperature of the soup be after a "long" time? 
 
 

Solution: (a)  In this example, a = 70° F  and  f(0) = 200° F  so  f '(t) = k{ f(t) – 70 } and   

 f(t) = 70 + {200 – 70}.  ekt  = 70 + 130.  ekt  .  We can use the information that  f(5) = 150° F 

 to find the value of  k  and an equation for  f(t) : 
 

 150 = f(5) = 70 + 130.  ek5    so  k = 
1
5  . ln( 80/130 ) ≈ –0.0971  and f(t) = 70 + 130.  e(–0.0971)t. 

 
(b) We want to find the  t  so that  f(t) = 100.  Using the result from part (a), 

 

 100 = f(t) = 70 + 130. e(–0.0971)t   so  30 = 130. e(–0.0971)t  and  t =  
ln( 30/130 )

–0.0971    ≈ 15.1  minutes. 
 
(c) "After a long time"  means for very large values of  t. 

 

 lim
t∅∞ 

  70 + 130. e(–0.0971)t   =  lim
t∅∞ 

  70 + 
130

e(0.0971)t 
     →  70 + 0 = 70° F. 

 
 Eventually, the soup will cool down to (almost) the temperature of the room. 

 

PROBLEMS 
 

1. Fig. 13  shows the growth of a city over several decades.  How long 

did it take the city to double in population from 10,000  

 to 20,000?  How long did it take to double from 15,000 to 30,000?  

What is the approximate doubling time of this population? 
 

 
 
 

2. Fig. 14  shows the counts per minute from a piece of radioactive  

 material.  How long did it take the counts to decrease from 80 per  

 minute to 40?  From 60 to 30?  From 40 to 20?  What is the  

 half–life of this material? 
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3. The population of a community in 1970 was 48,000 people and in 1990 it was 64,000 people.   

 (a)  Write a formula for the population of the community  t  years after 1970.  (b)  Estimate the 

population in the year 2000.  (c)  Approximately when will the population be 100,000?   

 (d)  What is the doubling time of the population of this community? 
 
4. The population of a community in 1970 was 40,000 people and in 1990 it was 60,000 people.   

 (a)  Write a formula for the population of the community  t  years after 1970.  (b)  Estimate the 

population in the year 2000.  (c)  Approximately when will the population be 100,000?   

 (d)  What is the doubling time of the population of this community? 
 
5. You have found a terrific investment which pays at an effective annual rate of 15%.   

 (a)  Use the Rule of 72  and the exponential growth model to calculate how long it will take  

 a $5,000 investment to double.  (b)  How long will it take for the investment to triple? 
 
6. You have $3,000 invested for 10 years at an effective annual rate of 7.5% and a friend has the  

 same amount invested at an effective annual interest rate of 7.75% .  Your friend will get back how 

much more money than you at the end of  (a)  10 years?  (b)  20 years? 
 
7. Find a formula for the population of the city in Fig. 13. 
 
8. (Without using calculus.)  Each bacterium of a certain species splits into two bacteria at the end of  

 each minute.  If we start with a few bacteria in a bowl at 3 pm and the bowl is full of bacteria at 4:30 

pm, when was the bowl half full? 
 
9. The newscaster said that the population of the world is now doubling every 20 years.  What annual  

 rate of growth results in a 20 year doubling time? 
 
10. Group  A  has a population of 150,000 and a growth rate of 4%.   

 Group  B  has a population of 100,000 and a growth rate of 7%.  In 

how many years will the two groups be the same size?  (Fig. 15) 
 

11. Group  A  has a population of 600,000 and a growth rate of 3%.  

Group  B  has a population of 400,000 and a growth rate of 6%.  In 

how many years will the two groups be the same size? 
 
12. Derive the "Rule of 72."  For an investment with an annual rate of  

 return of  R%, show that the value of the growth constant is  k = ln(1 + R/100)  so the doubling time is  

ln(2)/ln(1 + R/100).  Calculate the values of  k  for  R  between  5  and  15, and observe that for these 

values of  R  the exact doubling time   
ln(2)

ln(1 + R/100)    is approximately equal to   
72
R    . 

 
13. Develop a "Rule of M"  for the tripling time of a investment.  Find a value for  M  so  M/R  is a  

 good approximation of the time its takes an investment with a rate of return of R %  to triple in value.  

Assume that  R  is between  5  and  15. 
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14. The unregulated population of fish in a certain lake grows  

 by 30% per year under optimum conditions, and the result  

 of a fish census is that there are approximately 20,000 fish  

 in the lake.  How many fish can be harvested  (Fig. 16)  at  

 the end of the year in order to maintain a stable population 

from year to year?  (This is an example of calculating the  

 yield for a "renewable resource."  In practice, the  

 calculations are more sophisticated and also take into  

 account the distribution of species, ages and genders.) 

 
15. The annual growth constant for the population of snails is  k = 0.14 , and currently we have 8,000 snails. 

 (a) Graph the snail population for 20 months if we harvest 2,000 snails at the end of every 2 months. 

 (b) Graph the snail population for 20 months if we harvest 3,000 snails at the end of every 2 months. 

 (c) How many snails can we harvest every 2 months in order to maintain a stable population? 
 
16. An exponential growth function  f(t) = A ekt  has a constant doubling time, but there are functions  

 with constant doubling times which are not exponential.  (a)  Show that the exponential function  f(t) = 

2t = eln(2)t  has a constant doubling time of 1.  (Show that  f(t+1) = 2f(t). )  (b)  Graph the function  

g(t) = 2t(1 + A.sin(2πt))  for A = 0.5 and  1.5 .  Show that  g  has a constant doubling time  1  for every 

choice of  A. 
 
17. We started an experiment with 10 grams of a radioactive material and 14 days later there were  

 2 grams left.  (a)  Find an equation for the amount of material remaining  t  days after the beginning of 

the experiment.  (b)  Find the half–life of the material.  (c)  How long after the beginning of the 

experiment will there be 0.7 grams of the material left? 
 
18. We start with 8 mg of a radioactive substance and 10 days later determine that there is 6.3 mg of  

 the substance left.  (a)  Find an equation for the amount left  t  days after the start.  (b)  Find the half–

life of the material.  (c)  How long after the start will there be one milligram of the substance left? 
 
19. The Geiger counter initially recorded  187 counts per minute from a radioactive material, but 2 days  

 later the count was down to 143 counts per minute.  (a)  What is the half–life of the material?  

(b)  When will the count be down to 20 counts per minute?  (The count per minute is proportional to 

the amount of radioactive material present.) 
 
20. The initial measurement from a radioactive material was  540 counts per minute, and a week later it  

 was 500 counts per minute.   

 (a)  What is the half–life of the material?   

 (b)  When will the count be down to 100 counts per minute? 
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21. Determine an equation for the counts per minute for the  

 radioactive material  A  in Fig. 17. 
 
22. Determine an equation for the counts per minute for the  

 radioactive material  B  in Fig. 17. 
 
23. A friend is considering purchasing a letter reputedly written  

 by Isaac Newton (1642–1727), but an analysis of the paper 

shows that it contains 97.5% of the proportion of carbon–14 

present in new paper.  Can we be certain the letter is a 

forgery?  If the paper is the right age, can we be certain the 

letter  is genuine? 
 
24. For several centuries the Shroud of Turin was widely believed to be the shroud of Jesus.  Three independent  

 laboratories in England, Switzerland, and the United States used carbon–14 dating on a few square 

centimeters of the cloth, and in 1988 they reported that the Shroud of Turin was probably made in the early 

1300s and certainly after 1200 A.D. (a)  If the Shroud was made in 1300 A.D., what percentage of the 

original carbon–14 was still present in 1988?  (b)  If the Shroud was made in 30 A.D., what percentage of 

the original carbon–14 was still present in 1988?  (Science 21, October 1988, Vol. 242, p. 378) 
 
25. Half of a particular medicine is used up by the body every 6 hours, and the medicine is not effective if  

 the concentration in the blood is less than 10 mg/l.  If an ill person is given an initial dose of medicine 

to raise the concentration to 30 mg/l, how long will the medicine be effective? 
 
26. A particular illegal substance has a half–life of 12 hours, and it can be detected in concentrations as  

 low as 0.002 mg/l in the blood.  (a)  If a person has an initial concentration of the substance of 15 mg/l 

in the blood, how long can it be detected?  (b)  If the detection test is improved by a factor of 100 so it 

can detect a concentration of  0.00002 mg/l, how long can an initial concentration of 15 mg/l be 

detected? 
 
27. A doctor gave a patient 9 mg of a medicine which has  

 half–life of 15 hours in the body.  How much of the 

medicine does the patient need to take every 8 hours  

 in order to maintain between 6 and 9 mg of the medicine in 

the body all of the time?  (Fig. 18) 
 
28. Each layer of a dark film transmits 40% of the light  

 that strikes it.  (a)  How many layers are needed for an 

eye shield to transmit 10% of the light?  (b)  How many 

layers are needed to transmit 2% of the light? 
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29. A region has been contaminated with radioactive iodine–131 to a level 5 times the safe level.  

  How long will it take until the area is safe? 
 
30. A region has been contaminated with radioactive strontium–90 to a level 5 times the safe level.   

 How long will it take until the area is safe? 
 
31. The population of a country is 4 million and is growing at 5% per year.  Currently the country has  

 10 million acres of forests which are being cut down (and not replanted) at a rate of 300,000 acres per 

year.  (a) Find an equation for the number of acres of forest per person.   

 (b) How fast is the number of acres of forest per person changing?   

(c) If the population and harvest rates remain constant, in approximately how many years will there be 

one acre of forest per person? 
 
32. When a pan of hot (200° F) water is removed from the stove in a 70° F kitchen, it takes 4 minutes  

 to cool to a temperature of 150° F.   

 (a) Find an equation for the temperature of the water  t  minutes after it is removed from the stove.  

(b) When will the water be 100° F?    (c)  When will the water be 80° F?   

 (d) When will be water be 60° F? 
 
33. When the pan of 200° F water is taken outside on a cool (40° F) day, it only takes 4 minutes to  

 cool to 150 F.     

 (a) Find an equation for the temperature of the water  t  minutes after it is removed from the stove.  

(b) When will the water be 100° F?    (c)  When will the water be 80° F?   

 (d) When will be water be 60° F? 
 
34. When a pitcher of orange juice is taken out of a 40° F refrigerator in a 70° F kitchen, it takes 5  

 minutes to warm up to 60° F.   

 (a) Find an equation for the temperature of the juice  t  minutes after it is removed from the refrigerator.  

(b) How long does it take to warm up 50° F?   

 (c) How long does it take to warm up to 65° F? 
 
 
Section 6.3 PRACTICE  Answers 
 

Practice 1: f(t) =  2000.e0.0488t  . 

 (a) When  t = 5,  f(5) =  2000.e0.0488(5)  =  2000.e0.244 ≈ 2000(1.276) = 2,552 . 

 (b) f(t) = 5000:  5000 =  2000.e0.0488t   so  
5000
2000   =  

5
2   =  e0.0488t .   

  Taking the natural log of each side,  ln( 5/2 ) = 0.0488t  and  t = 
1

0.0488   ln( 5/2 ) ≈ 18.78 . 

 (c) f(0) = 2,000.  Triple = 6,000.  6000 =  2000.e0.0488t   so  
6000
2000   =  3  =  e0.0488t .  

  Taking the natural log of each side,  ln( 3 ) = 0.0488t  and  t = 
1

0.0488   ln( 3 ) ≈ 22.51 . 
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Practice 2: f(0) = 12,000  and  f(2) = 18,000. 

 (a) f(t) = 12,000.ekt.  18,000 = 12,000.ek(2)  so   
18000
12000  = 1.5 = e2k . 

  Taking the natural log of each side,  ln( 1.5 ) = 2k  and  k = 
1
2  ln(1.5) ≈ 0.2027 . 

  f(t) = 12,000.e( 0.5 ln(1.5) ) t ≈  12,000.e0.2027t. 

 (b) Double = 2(12,000) = 24,000.  24,000 = 12,000.e0.2027t  so  
24000
12000   = 2 = e0.2027t   . 

  Then  ln(2) = 0.2027t   so  t = 
1

0.2027  ln(2) ≈ 3.42 . 
 

Practice 3: After 1 year, each $1  investment will be  $1 + (.12)($1) = $1.12  so  f(1) = 1.12 = 1.ek⋅1  . 

 Solving for k,   1.12 = ek  so  k = ln( 1.12 )  and  f(t) = eln( 1.12 )t  .   

 Solving   2 = eln( 1.12 )t  for t  gives  t =  
ln( 2 )

ln( 1.12 )   ≈ 6.12  years. 

 

Practice 4: f(t) = f(0).ekt  = 10.ekt    with  k = 
ln( 1/2 )
half life   =  

ln( 1/2 )
8    ≈  –0.0866 .   

  f(t) ≈ 10.e–0.0866t . 

 

 

Differential equations in "literature": 

 

From the murder mystery, The Calculus of Murder by Erik Rosenthal, St. Martin's Press, 1986: 

 

 "Maybe we could do some calculations before you call.  From what you said, the rate of 

absorption would be proportional to the amount present and inversely proportional to the content 

of the stomach." 

 "Daniel, speak English." 

 "The more poison, the faster the rate of absorption:  the greater the content of the 

stomach, the slower the . . . " 

 "Got it.  Sounds right.  So?" 

 "There's probably a constant of absorbency well known for arsenic and any given set of 

conditions.  It's a simple differential equation." 

 "You're kidding." 

The detective, a calculus teacher (!), then goes on to solve the differential equation  y'=cy, to find the 

absorption constant c,  and to figure out "whodunit". 

 

 

 


