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7.3 CALCULUS WITH THE INVERSE TRIGONOMETRIC FUNCTIONS 
 

The three previous sections introduced the ideas of one–to–one functions and inverse functions and used 

those ideas to define arcsine, arctangent, and the other inverse trigonometric functions.  Section 7.3  presents 

the calculus of inverse trigonometric functions.  In this section we obtain derivative formulas for the inverse 

trigonometric functions and the associated antiderivatives.  The applications we consider are both classical 

and sporting.  
 

Derivative Formulas for the Inverse Trigonometric Functions 

 
 
 Derivative Formulas 
 

 (1) D( arcsin(x) ) =  
1

1 – x2     (for  |x| < 1 )  (4) D( arccos(x) ) =  – 
1

1 – x2     (for  |x| < 1 )  

 

 (2) D( arctan(x) ) =  
1

1 + x2      (for all x )  (5) D( arccot(x) ) =  – 
1

1 + x2       (for all x )  

 

 (3) D( arcsec(x) ) =  
1

|x| x2 – 1
    (for |x| > 1 )  (6) D( arccsc(x) ) =  – 

1

|x| x2 – 1
     (for |x| > 1 )  

   
 

The proof of each of these differentiation formulas follows from what we already know about the derivatives 

of the trigonometric functions and the Chain Rule for Derivatives. Formula  (2)  is the most commonly used 

of these formulas, and it is proved below.  The proofs of formulas  (1), (4), and  (5)  are very similar and are 

left as problems.  The proof of formula  (3)  is slightly more complicated and is included in an Appendix after 

the problems. 

 
Proof of formula  (2):   The proof relies on two results from previous sections, that   
 
  D( tan( f(x) ) )  =  sec2( f(x) ). D( f(x) )  (using the Chain Rule) and that  tan( arctan(x) ) = x .  
 
 Differentiating each side of the equation    tan( arctan(x) ) = x , we have  

 
 D( tan( arctan(x) ) )  = D( x ) = 1.   
 

Evaluating each derivative in the last equation, 
 
 D( tan( arctan(x) ) )  =  sec2( arctan(x) ). D( arctan(x) )  and  D( x ) = 1 so 
 
 sec2( arctan(x) ). D( arctan(x) ) = 1 . 
 

Finally, we can divide each side by  sec2( arctan(x) )  to get 
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D( arctan(x) )  =  
1

sec2( arctan(x) )
  =  

1

sec( arctan(x) ).sec( arctan(x) )
    

 

  =  
1

1 + x2 1 + x2     =  
1

1 + x2   . 

 
Example 1: Calculate  D( arcsin( ex ) ) ,  D( arctan( x – 3 ) ) , D( arctan3( 5x ) ) , and  D( ln( arcsin(x) ) ). 
 
Solution: Each of the functions to be differentiated is a composition, so we need to use the Chain Rule.  

 

 D( arcsin( ex ) )  =  
1

1 – (ex)2
   D( ex ) =  

ex

1 – e2x    . 

   

 D( arctan( x – 3 ) ) =  
1

1 + (x – 3)2 
   D( x – 3 )  =  

1
1 + (x – 3)2 

    =  
1

x2 – 6x + 10
   . 

 

 D( arctan3( 5x ) ) = 3arctan2( 5x ) D( arctan( 5x) )  = 3arctan2( 5x ) . 1
1 + ( 5x )2

  . 5 . 

 

 D( ln( arcsin(x) ) ) = 
1

arcsin(x)   D( arcsin(x) ) =  
1

arcsin(x)  . 
1

1 – x2   . 

 
Practice 1: Calculate  D( arcsin( 5x ) ) , D( arctan( x + 2 ) ) , D( arcsec( 7x ) ) , and D( earctan( 7x ) ). 

 
A Classic Application 
 

Mathematics is the study of patterns, and one of the pleasures of mathematics is that the same pattern can 

appear in unexpected places.  The version of the classical Museum Problem below was first posed in 1471 

by the mathematician Johannes Muller and is one of the oldest 

known maximization problems. 
 

Museum Problem:  The lower edge of a 5 foot painting is 4 

feet above your eye level  (Fig. 2).  At what distance 

should you stand from the wall so your viewing angle of 

the painting is maximum? 
 

On a typical autumn weekend, however, a lot more people would rather  

be watching or playing a football or soccer game than visiting a museum  

or solving a calculus problem about a painting.  But the pattern of the Museum Problem even appears in 

football and soccer, sports not invented until hundreds of years after the original problem was posed and 

solved. 

 
Since we also want to examine the Museum Problem in other contexts, let's solve the general version. 
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Example 2:  General Museum Problem.   

 The lower edge of a H foot painting is A feet above your eye level   

 (Fig. 3).  At what distance  x  should you stand from the painting  

 so the viewing angle is maximum? 
 

Solution:  Let  B = A + H.  Then  tan(α) =  
A
x     and   tan(β) =  

B
x     

so  α = arctan( A/x )   and  β =  arctan( B/x ).  The viewing angle  

is   θ =  β – α =  arctan( B/x ) – arctan( A/x ).  We can maximize  

θ  by calculating the derivative  
dθ
dx   and finding where the derivative is zero.   

Since  θ =  arctan( B/x ) – arctan( A/x ) , 
 

dθ
dx    =  D(  arctan( B/x )  ) –  D(  arctan( A/x )  )  
 

 =  
1

1 + ( B
x )2  ( – 

B
x2  )   –  

1

1 + ( A
x )2  ( – 

A
x2  )   =  

– B
x2 + B2   +  

A
x2 + A2    . 

 

Setting  
dθ
dx   =  0  and solving for  x,  we have  x = AB   =  A(A + H)   .  (We can disregard the  

endpoints since we clearly do not have a maximum viewing angle with our noses pressed against the wall 

or from infinity far away from the wall.) 
 

Now the Original Museum Problem and the Football and Soccer versions below are straightforward. 
 

In our original Museum Problem,  A = 4  and  H = 5, so the maximum viewing angle occurs when  

x = 4(4+5)   =  6 feet.  The maximum angle is  θ = arctan( 9/6) – arctan( 4/6) ≈ 0.983 – 0.588  ≈ .395  or 

about 22.6° . 
 

Practice 2:  Football.  A kicker is attempting a field goal by kicking the football between the goal posts  

(Fig. 4).  At what distance from the goal line should 

the ball be spotted so the kicker has the largest 

angle for making the field goal?  (Assume that the 

ball is "spotted" on a "hash mark" that is 53 feet 4 

inches from the edge of the field and is actually 

kicked from a point about 9 yards further from the 

goal line than where the ball is spotted.) 
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Practice 3:  Soccer.  Kelcey is bringing the ball down the middle  

 of the soccer field toward the 25  foot wide goal which is defended 

by a goalie  (Fig. 5).  The goalie is positioned in the center of the 

goal and can stop a shot that is within four feet of the center of  

 the goalie.  At what distance from the goal should Kelcey shoot  

 so the scoring angle is maximum? 
 

Antiderivative Formulas 
 

Despite the Museum Problem and its sporting variations, the primary use of the inverse trigonometric 

functions in calculus is their use as antiderivatives.  Each of the six differentiation formulas at the 

beginning of this section gives us an integral formula, but there are only three essentially different patterns: 
 

 ⌡⌠ 1

1 – x2    dx  = arcsin( x ) + C ( for  | x | < 1 ) 

 

 ⌡⌠ 1
1 + x2   dx  = arctan( x ) + C  ( for all x ) 

 

 ⌡⌠ 1

|x| x2 – 1
    dx =  arcsec( x ) + C. ( for  | x | > 1 ) 

 

Most of the integrals we need are variations of the basic patterns, and usually we have to transform the 

integrand so that it exactly matches one of the basic patterns. 
 

Example 3: Evaluate  ⌡⌠  1
16 + x2   dx  . 

 
Solution: We can transform this integrand into the arctangent pattern by factoring  16  from the  

 denominator and changing to the variable  u = x/4 : 
 

  
1

16 + x2   = 
1
16  . 1

1 + 
x2

16

    =  
1
16  . 1

1 + ( x/4 )2
    =  

1
16  . 1

1 + u2   . 

 

 If  u = x/4  then  du = 
1
4   dx  and  dx = 4 du  so   

 

 ⌡⌠  1
16 + x2   dx  =  ⌡⌠ 1

16  . 1
1 + u2  . 4 du   

 

  =  
1
4  ⌡⌠ 1

1 + u2   du  =  
1
4  arctan( u ) + C  =  

1
4  arctan( 

x
4   ) + C  . 
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Practice 4: Evaluate   ⌡⌠  1
1 + 9x2   dx   and  ⌡⌠  1

25 – x2   dx . 

 

The most common integrands contain patterns with the forms   a2 – x2  , a2 + x2  , and  x2 – a2   where  a is 

constant, and it is worthwhile to have general integral patterns for these forms. 

 
 
 ⌡⌠  1

a2 – x2    dx = arcsin( 
x
a  )  + C ( for  | x | < | a | ) 

 

 ⌡⌠  1
a2 + x2   dx = 

1
a   arctan( 

x
a  )  + C ( for all  x  and  for  a ≠ 0 ) 

 

 ⌡⌠  1

|x| x2 – a2    dx = 
1
a   arcsec( 

x
a  )  + C ( for all  | x | > | a | > 0 ) 

  
 

These general formulas can be derived by factoring the  a2  out of the pattern and making a suitable change 

of variable.  The final results can be checked by differentiating.  The  arctan  pattern is, by far, the most 

commonly needed.  The arcsin pattern appears occasionally, and the arcsec pattern only rarely.   
 

Example 4: Derive the general formula for  ⌡⌠  1

a2 – x2    dx  from the formula for  ⌡⌠  1

1 – x2    dx .  

 
Solution: We can algebraically transform the  a2 + x2  pattern into an  1 + u2  pattern for an appropriate u: 
 

  
1

a2 – x2   =  
1

a2 (1 – x2/a2)
    =  

1
a  

1

1 – (x/a)2
   .   

 
 If we put  u = x/a , then  du = 1/a dx  and  dx = a du  so 
 

  ⌡⌠  1

a2 – x2    dx   =  
1
a  ⌡⌠ 1

1 – (x/a)2
   dx   =    

1
a  ⌡⌠ 1

1 – u2   . a du   

 

   =  ⌡⌠ 1

1 – u2    du  =  arcsin( u ) + C  =  arcsin( 
x
a  ) + C. 

 

Practice 5:  Verify that the derivative of   
1
a  . arctan(  

x
a   )  is   

1
a2 + x2   . 

 

Example 5: Evaluate  ⌡⌠  1

5 – x2    dx   and  ⌡⌠

1

3
  1

5 + x2   dx  . 

 
Solution: The constant  a  does not have to be an integer,  so we can take  a2 = 5  and  a = 5   .  Then 
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 ⌡⌠  1

5 – x2    dx  =  arcsin(  
x
5   )  + C  ,  and  

 

 ⌡⌠

1

3
  1

5 + x2   dx  =  
1
5   arctan(  

x
5   ) |

3

1
   =  

1
5   arctan(  

3
5   )  –  

1
5   arctan(  

1
5   )  ≈  0.228 . 

 

The easiest way to integrate some rational functions is to split the original integrand into two pieces. 

 

Example 6: Evaluate   ⌡⌠  6x + 7
25 + x2   dx . 

 
Solution: This integrand splits nicely into the sum of two other  functions that can be easily  integrated: 
 

  ⌡⌠  6x + 7
25 + x2   dx  = ⌡⌠  6x

25 + x2   dx  + ⌡⌠  7
25 + x2   dx  . 

 

 The integral of  
6x

25 + x2    can be evaluated by changing the variable to  u = 25 + x2  and  du = 2x dx.   

 

 Then  6x dx = 3 du   and   ⌡⌠  6x
25 + x2   dx  =  ⌡⌠  3u   du   =  3 ln| u | + C  =  3 ln( 25 + x2 )  + C . 

 

 The integral of  
7

25 + x2    matches the  arctangent pattern with  a = 5:   

 

  ⌡⌠  7
25 + x2   dx  =  

7
5   arctan(  

x
5   )  +  C .   

 

 Finally,  ⌡⌠  6x + 7
25 + x2   dx  = ⌡⌠  6x

25 + x2   dx  + ⌡⌠  7
25 + x2   dx  = 3 ln( 25 + x2) + 

7
5   arctan(  

x
5   ) + C. 

 

 The antiderivative of a linear function divided by an irreducible quadratic commonly involves a 

logarithm and an arctangent. 
 

Practice 6: Evaluate   ⌡⌠  4x + 3
x2 + 7

   dx . 

 
 
PROBLEMS  
 
In problems 1 – 15, calculate the derivatives. 
 
1. D( arcsin( 3x ) )  2. D( arctan( 7x ) )  3. D( arctan( x + 5 ) )  
 
4. D( arcsin( x/2 ) ) 5. D( arctan( x   ) )  6. D( arcsec( x2 ) ) 
 
7. D( ln( arctan( x ) ) )  8. D( arcsin( x )  ) 9. D( ( arcsec(x) )3 )   
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10. D( arctan( 5/x ) ) 11. D( arctan( ln(x) ) )  12. D( arcsin( x + 2 ) ) 
 

13. D( ex .arctan( 2x ) ) 14. D( 
arcsin(x)
arccos(x)  )  15. D( arcsin(x) + arccos(x) ) 

 

16. D( x .arctan(x) ) 17. D( 
1

arcsin(x)  )  18. D( (1 + arcsec(x) )3 ) 
 

19. D( sin( 3 + arctan(x) ) ) 20. D( tan(x) .arctan(x) )  21. D( x .arctan( 
1
x  ) ) 

 

22. ⌡⌠ 
7

9 – x2   dx 23. ⌡⌠

0

1
 

3
x2 + 25

   dx 24. ⌡⌠

5

7
 

5

x x2 – 16
   dx 

 

25. ⌡⌠ 
9

49 – x2   dx 26. ⌡⌠

1

4
 

2
7 + x2   dx 27. ⌡⌠

6

10
 

3

x x2 – 25
    dx 

 

28. ⌡⌠ 
7

(x – 5)2 + 9
   dx 29. ⌡⌠

–1

1
 

ex

1 + e2x   dx 30. ⌡⌠

1

e
 
1
x  . 3

1 + ( ln(x) )2
    dx  

31. ⌡⌠ 
cos(x)

9 – sin2(x)
   dx 32. ⌡⌠ 

8x
16 + x2   dx 33. ⌡⌠ 

6x
9 + x4   dx 

 
 

34. (a)  Use arctangents to describe the viewing angle 

for the sign in Fig. 6 when the observer is  x  feet 

from the entrance to the tunnel.  (b)  At what 

distance  x  is the viewing angle maximized? 
  

 

 

 

35. (a)  Use arctangents to describe the viewing angle for the chalk board in Fig. 7 when the student is  x  

feet from the front wall.  (b)  At what distance  x  is the viewing angle maximized? 
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In problems  36 – 39, find the function  y  which satisfies the differential equation and goes through the 

given point. 
 

36. 
dy
dx   =  

1
y( 1 + x2 )

    and  the point  (0,4). 37. 
dy
dx   =  

y

1 – x2    and  y(0) = e . 

 

38. y ' . 16 – x2   =  y  and  y(4) = 1. 39. 
dy
dx   =  

y2

9 + x2    and the point  (1,2) . 

   

40. Prove differentiation formula  (1):  D( arcsin(x) ) =  
1

1 – x2     (for  |x| < 1 )  .  

   

41. Prove differentiation formula (4):  D( arccos(x) ) =  – 
1

1 – x2     (for  |x| < 1 )  . 

 

42. Prove differentiation formula (5):  D( arccot(x) ) =  – 
1

1 + x2       (for all x )  . 

 

43. Let A(x)  =  ⌡⌠

0

x
 

1
1 + t2

   dt , the area between the curve  y = 
1

1 + t2
   and the  t–axis  between t = 0 and  x.    

 

 (a)  Evaluate  A(0), A(1), A(10) .  (b)  Evaluate  lim
x∅∞ 

 A(x) . (c)  Find  
d A(x)

dx    . 

 
 (d)  Is  A(x)  an increasing, decreasing or neither?  (e)  Evaluate  lim

x∅∞ 
 A '(x) . 

 

44. Find area between the curve  y =  
1

1 + x2    and the  x–axis  (a)  from  x = – 10 to 10  and   

(b)  from  x = –A  to A .  (c) Find the area under the whole curve.  (Calculate the limit of your answer 

in part (b)  as  A → ∞ .) 
 
 

45. ⌡⌠ 
8x – 5
x2 + 9

   dx 46. ⌡⌠ 
1 – 4x
x2 + 1

   dx 47. ⌡⌠ 
7x + 3
x2 + 10

   dx 48. ⌡⌠ 
x + 5
x2 + 9

  

 
Problems 49 – 53 illustrate how we can sometimes decompose a difficult integral into easier ones. 

 

49. (a) ⌡⌠ 
8

x2 + 6x + 10
    dx     (hint:  x2 + 6x + 10 = (x + 3)2 + 1.  Try  u = x + 3 .) 

 

(b) ⌡⌠ 
4x + 12

x2 + 6x + 10
   dx   (hint:  Try  u = x2 + 6x + 10 .  Then  (2x + 6) dx = 2 du .) 

 

(c) ⌡⌠ 
4x + 20

x2 + 6x + 10
    dx  (hint:  

4x + 20
x2 + 6x + 10

   =  
4x + 12

x2 + 6x + 10
  + 

8
x2 + 6x + 10
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50. (a) ⌡⌠ 
7

x2 + 4x + 5
    dx  (b) ⌡⌠ 

12x + 24
x2 + 4x + 5

   dx  (c) ⌡⌠ 
12x + 31

x2 + 4x + 5
    dx  

 

51. ⌡⌠ 
6x + 15

x2 + 4x + 20
    dx  52. ⌡⌠ 

2x + 5
x2 – 4x + 13

    dx  

 
 
 
 
Section 7.3 PRACTICE  Answers 
 

Practice 1: D( arcsin(5x) ) = 
1

1 – (5x)2
  .5  =  

5

1 – 25x2   .   

 

 D( arctan(x+2) ) = 
1

1 + (x+2)2
   = 

1
x2 + 4x + 5

  . D( arrcsec( 7x ) ) = 
1

|7x| (7x)2 – 1
  .7 =  

1

|x| 49x2 – 1
   . 

  

 D( earctan(7x) ) =  earctan(7x) D( arctan(7x) ) =  earctan(7x) . 7
1 + (7x)2

   =  earctan(7x) . 7
1 + 49x2   . 

 

Practice 2: Football:  A = 16.9 ft.  H = 18.5 ft.  (see Fig. 8)  so  x = A(A+H)  = 598.26   ≈  24.46 feet 

from the back edge of the end zone.  Unfortunately, that is still more than  

 5 feet into the endzone.  Our mathematical analysis shows that to maximize the angle for kicking a 

field goal, the ball should be placed 5 feet into the end zone, a touchdown!  If the ball is placed on a 

hash mark at the goal line, then the kicking distance is 57 feet (10 yards for the width of the endzone 

plus 9 yards that the ball is hiked) and the scoring angle for the kicker is   

 θ = arctan(35.4/57) – arctan(16.9/57) ≈  15.3o .  It is somewhat interesting to see how the scoring angle   

 θ = arctan(35.4/x) – arctan(16.9/x)  changes with the distance  x  (feet), and also to compare the 

scoring angle for balls placed on the hash mark with those placed in the center of the field. 
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Practice 3: Soccer:  See Fig. 9.  A = 4 ft.  and  H = 8.5 ft.  so  x = A(A+H)   =  50   ≈  7.1 ft.   

 From 7.1  feet, the scoring angle on one side of the goalie is  θ = arctan(12.5/7.1) – arctan(4/7.1) ≈  31o .  

For comparison, the scoring angles  θ = arctan(12.5/x) – arctan(4/x)  are given for some other distances  x  

from the goal. 
 
 x  θ       
 5 29.5o   
 7.1 31.0o   
 10 29.5o   
 15 24.9o   
 20 20.7o   
 30 15.0o   
 40 11.6o   
 

Practice 4: ⌡⌠  
1

1 + 9x2   dx  =  ⌡⌠  
1

1 + (3x)2
   dx  .  Put  u = 3x.  Then  du = 3 dx  and  dx = 

1
3  du. 

 

 ⌡⌠  
1

1 + (3x)2
   dx  =  ⌡⌠  

1
1 + (u)2

  .13  du  =  
1
3   arctan( u ) + C  =  

1
3  arctan (3x) + C . 

 

 ⌡⌠  
1

25 – x2   dx  =  ⌡⌠  
1
5 

1

1 – ( x/5 )2
   dx .  Put  u = 

x
5  .  Then  du = 

1
5  dx  and  dx = 5 du. 

 

 ⌡⌠  
1
5 

1

1 – ( x/5 )2
   dx   =  ⌡⌠  

1
5 

1

1 – (u)2
  .5 du  =  arcsin( u ) + C  =  arcsin( 

x
5  ) + C . 

 

Practice 5: D( 
1
a  arctan( 

x
a  ) ) = 

1
a  . 1

1 + ( x/a )2
  

1
a   =  

1
a2  . 1

1 + ( x/a )2
   =  

1
a2 + x2   . 

 
 

Practice 6: ⌡⌠  
4x + 3
x2 + 7

   dx  =  ⌡⌠  
4x

x2 + 7
   dx   + ⌡⌠  

3
x2 + 7

   dx  . 

 
 For the first integral on the right, put  u = x2 + 7.  Then  du = 2x dx  and  2 du = 4x dx.  Then 
 

 ⌡⌠  
4x

x2 + 7
   dx   =  ⌡⌠  

2
u   du   =  2.ln| u | + C =  2.ln( x2 + 7 ) + C. 

 
 The second integral on the right matches the "arctan" pattern; 

  ⌡⌠  
3

x2 + 7
   dx  .=  

3
7  arctan( 

x
7  ) + C . 

 

 Therefore,  ⌡⌠  
4x + 3
x2 + 7

   dx  =  2.ln( x2 + 7 ) +  
3
7  arctan( 

x
7  ) + C . 
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Appendix: Proofs of Some Derivative Formulas 

 

Proof of formula  (1):   The proof relies on two results from previous sections, that  

 D( sin( f(x) ) ) =  cos( f(x) ). D( f(x) )  (the Chain Rule)  and that  sin( arcsin(x) ) = x  (for  |x| ≤ 1).  

 Putting these two results together and differentiating both sides of  sin( arcsin(x) ) = x, we get  
 
  D( sin( arcsin(x) ) ) =   D( x ) . 
 
 Evaluating the derivatives,  

  D( sin( arcsin(x) ) ) =  cos( arcsin(x) ). D( arcsin(x) )  and  D( x ) = 1    
 
 so   cos( arcsin(x) ). D( arcsin(x) ) = 1.  
 

 Dividing each side by  cos( arcsin(x) ) and using the fact that  cos( arcsin(x) ) = 1 – x2   ,  we have   

   D( arcsin(x) ) =  
1

cos( arcsin(x) )    =  
1

1 – x2   . 

 The derivative of  arcsin(x)  is defined only when   1 – x2 > 0 , or equivalently, if  | x | < 1 . 
 

 
Proof of formula (3): The proof relies on two results from previous sections, that  
 
   D( sec( f(x) ) )  =  sec( f(x) ).tan( f(x) ). D( f(x) )  (Chain Rule) and  sec( arcsec(x) ) = x .   
 
 Differentiating each side of  sec( arcsec(x) ) = x , we have 
 

  D( sec( arcsec(x) ) )  = D( x ) = 1.   
 

Evaluating each derivative, we have 
  D( sec( arcsec(x) ) )  =  sec( arcsec(x) ).tan( arcsec(x) ). D( arctan(x) ) = 1   

  so D( arcsec(x) )  = 
1

sec( arcsec(x) ).tan( arcsec(x) )
   =  

1

x.tan( arcsec(x) )
    . 

  
To evaluate  tan( arcsec(x) ),  we can use the identity  tan2(θ) = sec2(θ) – 1  with  θ = arcsec(x).  Then   
 
tan2( arcsec(x) ) = sec2( arcsec(x) ) – 1  = x2 – 1 .  Now, however, there is a slight difficulty:  is   

 

tan( arcsec(x) ) =  + x2 – 1   or is  tan( arcsec(x) ) =  – x2 – 1   ?  It is clear from the graph of 

arcsec(x)  (Fig. 8)  that  D( arcsec(x) )  is positive everywhere it is defined, so we need to choose the 

sign of the square root to guarantee that our calculated value for  D( arcsec(x) )  is positive.  An easier 

way to guarantee that the derivative is positive is simply to always use the positive square root and to 

take the absolute value of x.  Then 

  D( arcsec(x) )  =  
1

|x| x2 – 1
    > 0 . 

The derivative of  arcsec(x)  is defined only when   x2 – 1 > 0 , or equivalently, if  | x | > 1 . 
 


