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8.3 INTEGRATION BY PARTS 
 

Integration by parts is an integration method which enables us to find antiderivatives of some new 

functions such as  ln(x)  and  arctan(x)  as well as antiderivatives of products of functions such as  x2.ln(x)  

and  ex.sin(x).  It is the method used to derive many of the general integral formulas in the Table of 

Integrals.  The Integration By Parts Formula for integrals comes from the Product Rule for derivatives. 

 

For functions  u = u(x)  and  v = v(x), the Product Rule for derivatives is 
 

 
d( uv )

dx    =  u 
dv
dx   +  v 

du
dx     or, in the form using differentials,  d( uv ) = u dv + v du  . 

 
Algebraically solving for u dv , we have  u dv = d( uv ) – v du which can then be integrated to give 
 
  ⌡⌠ u dv  = ⌡⌠ d( uv )  –  ⌡⌠  v du  =  uv  –  ⌡⌠  v du . 

 

This last formula is called the Integration By Parts Formula, and it enables us to find antiderivatives for 

many functions which we have not been able to integrate using the substitution method.  In practice, the 
Integration By Parts Formula allows us to exchange the problem of finding one integral,  ⌡⌠ u dv  , for the 

problem of finding a different integral, ⌡⌠  v du .  This trade of one integral for another may not look very 

useful, but we can often arrange the exchange so we trade a difficult integral for a much easier one. 
 
  
 INTEGRATION BY PARTS FORMULA 
 
 If  u, v, u', and v' are continuous functions, 
 
 then  ⌡⌠ u dv  =  u.v  –  ⌡⌠  v du .  

   
 
For definite integrals, the Integration By Parts Formula is  
 
 

 ⌡⌠

a

b
 u dv  =  u.v|

b

a
   –  ⌡⌠

a

b
  v du  = { u(b).v(b) – u(a).v(a) }  –  ⌡⌠

a

b
  v du .  

   

Example 1: Use Integration By Parts to evaluate  ⌡⌠ x.cos(x) dx     

 and   ⌡⌠

0

π

 x.cos(x) dx  .  (Fig. 1) 

 
Solution: Our first step is to write this integral in the form of the  
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 Integration By Parts Formula, ⌡⌠ u dv  .  If we put  u = x,  then we must have  dv = cos(x) dx  so that  

u dv  completely represents the integrand  x.cos(x) .  In order to use integration by parts,  we also need 

to calculate  du  and  v: 
 
  Since u = x  and  dv = cos(x) dx   

  then   du = dx  and  v = sin(x).  
 
Putting these pieces into the Integration By Parts Formula,  we have 
 
  ⌡⌠  x.cos(x) dx  =  x.sin(x)  –  ⌡⌠  sin(x)  dx  =    x.sin(x) + cos(x) + C . 

 

(To check this result,  differentiate  x.sin(x) + cos(x)  to verify that its derivative is  x.cos(x) . ) 
 

⌡⌠

0

π

 x.cos(x) dx   =  x.sin(x) + cos(x) |
π

0
  = {π.sin(π) + cos(π)} – {0.sin(0) + cos(0)} = –1 – 1 = – 2 . 

 
The Integration By Parts formula allowed us to exchange the problem of evaluating   ⌡⌠  x.cos(x) dx   

for the much easier problem of evaluating   ⌡⌠  sin(x)  dx  .   

 

Practice 1: Use the Integration By Parts Formula on  ⌡⌠ x.cos(x) dx    with the choice  u = cos(x)   

 and   dv = x dx.  Why does this lead to a poor exchange? 
 

Example 2: Use integration by parts to evaluate   ⌡
⌠  x.e3x  dx   and   ⌡

⌠

0

1
  x.e3x  dx .    (Let  u = x .) 

 
Solution: Let  u = x.  Then  dv =  e3x dx  
 

  so  du = dx  and  v = 
1
3  e3x  . 

 
Using the Integration By Parts Formula, we get    
 

 ⌡⌠  x.e3x dx  =  x. 13  .e3x  –   ⌡⌠ 
1
3  .e3x  dx  =  

x
3  .e3x –  

1
9  .e3x   + C . 

 

⌡⌠

0

1
  x.e3x  dx  =   

x
3  .e3x –  

1
9  .e3x   |

1

0
   =   {  

1
3  .e3 –  

1
9  .e3 } – {0 –  

1
9  } =   

2
9  .e3 +  

1
9    . 

In this Example, it is valid to choose  u = e3x   and  dv = x dx, but that choice results in an  

integral that is more difficult than the original one.  If we put  u = e3x   and  dv = x dx,  then   

du = 3e3x dx  and  v = 
x2
2    ,  and the Integration By Parts Formula gives 
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 ⌡⌠  x.e3x dx  =  e3x  . x
2

2     –  ⌡⌠  
x2

2    3e3x dx . 

We end up exchanging the integral   ⌡⌠  x.e3x dx  for the more difficult integral   ⌡⌠ 
x2

2    3e3x dx . 

 
Practice 2: Evaluate    ⌡⌠  x.sin(x) dx   and    ⌡⌠  x.e5x dx .   (In each integral, let  u = x. ) 

 

Once we have chosen  u  and  dv  to represent the integrand as  u dv , we need to calculate  du  and  v.  The  

"du"  calculation is usually easy, but finding  v  from  dv  can be difficult for some choices of  dv.  In 

practice, you need to select  u  so dv  is a simple enough part of the integrand so you can find  v,  the 

antiderivative of  dv. 

 
Example 3: Evaluate   ⌡⌠  2x.ln(x) dx . 

 

Solution: The choice  u = 2x  seems fine until we go a little further with the process.  If  u = 2x, then  dv 

= ln(x) dx  and we need to find  du  and  v.  Finding  du = 2 dx   is simple,  but then we have the 

difficult problem of finding an antiderivative  v  for our choice  dv = ln(x) dx. 
 
 In this Example, the choice  u = ln(x)  results in easier calculations. 
 
  Let  u = ln(x).  Then  dv = 2x dx 

  so  du = 
1
x   dx  and  v = x2  . 

Then the Integration By Parts Formula gives 
 

⌡⌠  2x.ln(x) dx   =  ln(x) x2  – ⌡⌠  x2 .1x   dx    

 

 =  x2 .ln(x)  –  ⌡⌠  x dx   =   x2 .ln(x)  – 
x2

2    + C . 

 
 

If you can not find a  v  for your original choice of  dv, try a different choice for  u  and  dv. 
 

Integration by parts also enables us to evaluate the integrals of the inverse trigonometric functions and of 

the logarithm. 
 
Example 4: Evaluate    ⌡⌠  arctan(x) dx . 

 
Solution: Let  u = arctan(x).  Then  dv = dx 
 

  so  du = 
1

1 + x2 
   dx   and  v = x . 
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Then     ⌡⌠  arctan(x) dx  =  x arctan(x)  –    ⌡⌠  x. 1
1 + x2 

   dx .  We can evaluate the new integral      

 

⌡⌠  x. 1
1 + x2 

   dx   by changing the variable using  w = 1 + x2  .  Then  dw = 2x dx,  so   

 

⌡⌠  x. 1
1 + x2 

   dx   =     ⌡⌠ 
1
2 

1
w   dw  =  

1
2   ln| w |  =  

1
2  ln| 1 + x2 | .  Putting this all together, 

 

  ⌡⌠  arctan(x) dx  =  x arctan(x)  –  
1
2  ln| 1 + x2 | + C . 

 

Practice 3: Evaluate    ⌡⌠  ln(x) dx   and    ⌡⌠

1

e
  ln(x) dx . 

Notes: 1. Once   u  is chosen, then  dv  is completely determined:  dv = rest of the integrand. 

 2. Since we need to find an antiderivative of  dv  to get v, pick u  and  dv  so an antiderivative  v 

  can be found for the chosen  dv. 

 3. The Integration By Parts Formula allows us to trade one integral for another one. 

(a) If the new integral is more difficult than the original integral, then we have made a poor choice 

of  u  and  dv .  Try a different choice for  u  and  dv  or try a different technique. 
(b) To evaluate the new integral   ⌡⌠  v du   we may need to use substitution, integration by 

parts again, or some other technique such as the ones discussed later in this chapter. 
 

More General Uses of Integration By Parts   
 

The Integration By Parts Formula is also used to derive many of the entries in the Table of Integrals.  For 

some integrands such as  xn.ln(x),  the result is simply a function, an antiderivative of the integrand.  For 

some integrands such as  sinn(x),  the result is a reduction formula, a formula which still contains an 

integral, but the new integrand is the sine function raised to a smaller power, sinn–2(x).  By repeatedly 

applying the reduction formula, we can evaluate the integral of sine raised to any positive integer power. 
 

General Patterns 
 

Example 5: Evaluate   ⌡⌠ xn.ln(x)  dx   for  n ≠ –1. 

 
Solution: Let  u =  ln(x) .  Then  dv = xn dx 
 

  so  du = 
1
x   dx  and  v =  

1
n + 1   xn+1  . 
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Then    ⌡⌠ xn ln(x)  dx  =    
1

n + 1   .xn+1 . ln(x) –   ⌡⌠   
1

n + 1   .xn+1 . 1x   dx . 

 

But    ⌡⌠   
1

n + 1   .xn+1 . 1x   dx =   
1

n + 1  ⌡⌠   xn dx  = 
1

n + 1   . 1
n + 1   .xn+1 =  

xn+1

(n+1)2 
    ,  so 

 

⌡⌠ xn .ln(x)  dx  =    
xn+1
n + 1  .ln(x) –   

xn+1

(n+1)2 
   + C  =  

xn+1
n + 1  { ln(x) – 

1
n+1  } + C  for  n ≠ –1 . 

 
Practice 4: Use the result of Example 5 to evaluate   ⌡⌠  x2.ln(x) dx   and  ⌡⌠  ln(x)  dx  . 

 

Reduction Formulas 
 

Sometimes the general pattern still contains an integral, but a simpler one with a smaller exponent.  In that 

case we can reuse the reduction pattern until the resulting integral is simple enough to integrate completely. 

 
Example 6: Evaluate   ⌡⌠  xn ex dx  and use the result to evaluate   ⌡⌠  x2 ex dx . 

 
Solution: Put  u = xn .  Then  dv = ex dx , 

  so  du = n xn–1 dx  and   v = ex . 
 

The Integration By Parts Formula gives   ⌡⌠  xn ex dx  =  xn ex  –   n ⌡⌠  xn–1 ex  dx  , a reduction 

formula since we have reduced the power of  x  by 1 and have succeeded in trading the integral    
⌡⌠  xn ex dx   for the "reduced" integral   ⌡⌠  xn–1 ex dx .  

 
⌡⌠  x2 ex dx  has the form of the general pattern  ⌡⌠  xn ex dx  with  n = 2,  so 

 
  ⌡⌠  x2 ex dx  =  x2 ex  –   2 ⌡⌠  x1 ex  dx .   

 
Using the pattern on   ⌡⌠  x1 ex  dx  with n = 1 ,  we have 

 
⌡⌠  x2 ex dx  =  x2 .ex  –   2 ⌡⌠  x1 ex  dx   

 
 =  x2 .ex  –   2{ x.ex  –  ⌡⌠  ex  dx }  

 

 =  x2 .ex  –   2x.ex  +  2ex  + C  or  ex { x2 – 2x + 2 }  + C . 

 
Practice 5: Derive the reduction formula     ⌡⌠  xn.sin(x) dx  = –xn.cos(x) + n ⌡⌠  xn–1.cos(x) dx . 
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The Reappearing Integral 
 

Sometimes the integral we are trying to evaluate shows up on both sides of the equation during our 

calculations in such a way that we can solve for the integral algebraically. 
 
Example 7: Evaluate  ⌡⌠  ex cos(x) dx . 

 
Solution: Let  u =  ex .  Then  dv = cos(x) dx 

  so  du = ex dx   and  v = sin(x). 
 

Then  ⌡⌠  ex cos(x) dx  =  ex sin(x) –  ⌡⌠  ex sin(x) dx.  The new integral does not look any easier than 

the original one, but lets try to evaluate the new integral using integration by parts again. 
 
To evaluate  ⌡⌠  ex sin(x) dx. ,  let  u =  ex and  dv = sin(x) dx.  Then  du = ex dx  and  v = –cos(x)  so 

 
 ⌡⌠  ex sin(x) dx  =  –ex cos(x) +  ⌡⌠  ex cos(x) dx.   

Putting this result back into the original problem, we get 
 
 ⌡⌠  ex cos(x) dx   =  ex sin(x) –  ⌡⌠  ex sin(x) dx  = ex sin(x) – {–ex cos(x) +  ⌡⌠  ex cos(x) dx } 

 
 =  ex sin(x) + ex cos(x) –  ⌡⌠  ex cos(x) dx . 

 

The integral of  ex cos(x)  appears on each side of this last equation, and we can algebraically solve for 

it to get 
 

  2 ⌡⌠  ex cos(x) dx  = ex sin(x) + ex cos(x) , and finally,   

 

  ⌡⌠  ex cos(x) dx  =  
1
2  { ex sin(x) + ex cos(x)} + C . 

 

Practice 6: Derive the formula   ⌡⌠  ex sin(x) dx  =   
1
2  { ex sin(x) – ex cos(x)} + C . 
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PROBLEMS 
 

In problems  1–6,  a function  u  or  dv  is given.  Find the piece  u  or  dv  which is not given, calculate  du  

and  v, and apply the Integration by Parts Formula. 
 
1. ⌡⌠   12x.ln(x) dx u = ln(x) 2. ⌡⌠   x.e–x  dx u = x 

 
3. ⌡⌠   x4 ln(x) dx dv = x4 dx 4. ⌡⌠   x.sec2(3x) dx dv = sec2(3x) dx 

 
5. ⌡⌠   x.arctan(x) dx dv = x dx 6. ⌡⌠   x.(5x + 1)19 dx u = x 

 
In problems  7– 24 , evaluate the integrals. 
 

7. ⌡⌠

0

1
  

x
e3x    dx 8. ⌡⌠

0

1
   10x.e3x dx 9. ⌡⌠   x.sec(x).tan(x) dx  

 

10. ⌡⌠

0

π
   5x.sin(2x) dx 11. ⌡⌠

π/3

π/2
   7x.cos(3x) dx 12. ⌡⌠   6x.sin(x2 + 1) dx 

 

13. ⌡⌠   12x.cos(3x2) dx 14. ⌡⌠   x2 cos(x) dx 15. ⌡⌠

1

3
   ln(2x + 5)  dx  

 

16. ⌡⌠   x3 ln(5x) dx 17. ⌡⌠

1

e
  ( ln(x) ) 2 dx 18. ⌡⌠

1

e
  x .ln(x) dx 

 
19. ⌡⌠   arcsin(x) dx 20. ⌡⌠   x2 e5x dx 21. ⌡⌠   x.arctan( 3x ) dx  

 

22. ⌡⌠   x ln(x + 1) dx 23. ⌡⌠

1

2
  

ln(x)
x    dx 24. ⌡⌠

1

2
  

ln(x)
x2    dx 

 

These reduction formulas can all be derived using integration by parts.  In problems  25–30 , use them to 

help evaluate the integrals.  (These are entries 19, 20 and 23 in the Table of Integrals with  a = 1.) 
 

  ⌡⌠  sinn(x) dx  = 
1
n  {  –sinn–1(x).cos(x)  + (n–1) ⌡⌠  sinn–2(x) dx } + C  

  ⌡⌠  cosn(x) dx  =  
1
n  { cosn–1(x).sin(x) + (n–1) ⌡⌠  cosn–2(x) dx } + C 

  ⌡⌠  secn(x) dx  =  
1

n–1  { secn–2(x).tan(x) + (n–2) ⌡⌠  secn–2(x) dx } + C 
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25. (a) ⌡⌠   sin3(x) dx (b) ⌡⌠   sin4(x) dx (c) ⌡⌠   sin5(x) dx 

 

26. (a) ⌡⌠   cos3(x) dx (b) ⌡⌠   cos4(x) dx (c) ⌡⌠   cos5(x) dx 

 

27. (a) ⌡⌠   sec3(x) dx (b) ⌡⌠   sec4(x) dx (c) ⌡⌠   sec5(x) dx 

 

28. ⌡⌠   sin3(5x – 2) dx 29. ⌡⌠   cos3(2x + 3) dx 30. ⌡⌠   sec3(7x – 1) dx 

 

31. ⌡⌠   x.(2x + 5)19 dx  can be evaluated using integration by parts or a change of variable.  (a)  Evaluate 

the integral using integration by parts with  u = x  and  dv = (2x + 5)19 dx .  (b)  Evaluate the integral 

using change of variable with  u = 2x + 5.   (c)  Which method is easier? 
 

32. ⌡⌠  
x

1 + x   dx  can be evaluated using integration by parts or using a change of variable.  (a)  Evaluate 

the integral using integration by parts with  u = x  and  dv = 
1

1 + x    dx .  (b)  Evaluate the integral 

using change of variable with  u = 1 + x.  
 

33. (a) Before evaluating the integrals, which do you think is larger, ⌡⌠

0

1
   x.sin(x) dx  or  ⌡⌠

0

1
   sin(x) dx ?  Why? 

 (b) Evaluate  ⌡⌠

0

1
   x.sin(x) dx  and  ⌡⌠

0

1
   sin(x) dx .  Was your prediction in part (a) correct? 

 

34. (a) Before evaluating the integrals, which do you think is larger, ⌡⌠

0

π
   x.sin(x) dx  or  ⌡⌠

0

π
   sin(x) dx ?  Why? 

 (b) Evaluate  ⌡⌠

0

π
   x.sin(x) dx  and  ⌡⌠

0

π
   sin(x) dx .  Was your prediction in part (a) correct? 

 

35. In Fig. 2, the volume swept out when region A is revolved about the x–axis is  ⌡⌠

x=1

e
   π( ln(x) )2 dx   

 (using the disk method),  and the volume swept out when region B is revolved about the x–axis is 
  

 ⌡⌠

y=0

1
   2πy.ey dy  (using the tube method). 

 

 (a) Before evaluating the integrals, which volume do you think is 

larger?  Why? 

 (b) Evaluate the integrals.  Was your prediction in part (a) correct? 
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36. Use the tube method to calculate the volume when the region between the x–axis and the graph of   

 y = sin(x)  for  0 ≤ x ≤ π  is rotated about the y–axis. 
 

37. We derived the Integration by Parts Formula analytically, but the formula also has a geometric interpretation.   

 In Fig. 3, let  D  be the large rectangle formed by the regions  A, B, and C  so  we have the area 

equation     

  (area of  C) = (area of D) – (area of A) – (area of B).  

 (a) Represent the area of the large rectangle D as  
  a function of  u2  and  v2 . 

 (b) Represent the area of the small rectangle (region A)  
  as a function of  u1  and  v1 . 

 (c) Represent the area of region C as an integral with  

  respect to the variable  u. 

 (d) Represent the area of region B as an integral with  

  respect to the variable  v. 

 (e) Rewrite the area equation using the representations  

  in parts (a) – (d).  This result should look very familiar. 

   
38.   ⌡⌠   x.( ln(x) )2 dx 39. ⌡⌠   x2.arctan(x) dx 

 

40. ⌡⌠

0

1
   e–x sin(x) dx 41. ⌡⌠

0

1
  

cos(x)
ex     dx 

 
42. ⌡⌠   sin( ln(x) ) dx 43. ⌡⌠   cos( ln(x) ) dx 

 
44. ⌡⌠   e3x sin(x) dx 45. ⌡⌠   ex cos(3x) dx 

 
46. Use integration by parts to evaluate  ⌡⌠   sec3(x) dx . 

 
47. Derive a reduction formula for   ⌡⌠   xneax dx . 

 
48. Derive a reduction formula for   ⌡⌠   xn sin(ax) dx . 

 
49. Derive a reduction formula for   ⌡⌠   x.( ln(x) )n dx . 
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50. Suppose  f  and  f '  are continuous and bounded on the interval  [0, 2π]   ( |f(x)| < M  and  |f '(x)| < M  

for all  0 ≤ x ≤ 2π).  The nth Fourier Sine Coefficient of  f  is defined as the value of   

  Sn = ⌡⌠

0

2π
   f(x).sin(nx) dx . 

 (a) Use the Integration by Parts Formula with  u = f(x)  and  dv = sin(nx) dx  to represent the formula  
  for  Sn  in a different way. 

 (b) Use the new representation of  Sn  in part (a)  to determine what happens to the values of   

  Sn  when  n  is very large  (n → ∞ ).  (Hint:  | f '(x).cos(nx) | ≤ | f '(x)|.|cos(nx)| < M.1 = M .) 

 (c) What happens to the values of the nth Fourier Cosine Coefficient  Cn = ⌡⌠

0

2π
   f(x).cos(nx) dx    

  when n is very large. 

 
 
Section 8.3 PRACTICE  Answers 
 

Practice 1: ⌡⌠

a

b
  x.cos(x) dx.   Put  u = cos(x)  and  dv = x dx.  Then  du = –sin(x) dx  and  v = 

1
2  x2 . 

 uv – ⌡⌠   v du =  ( cos(x) )( 
1
2  x2 ) – ⌡⌠  ( 

1
2 x2 )( – sin(x) )  dx   

   =   
1
2  x2 cos(x) + 

1
2 ⌡⌠   x2 sin(x) dx . 

 
 The last integral  is worse than the original integral. 
 

Practice 2: (a) ⌡⌠

a

b
  x.sin(x) dx.   Put  u = x  and  dv = sin(x) dx.  Then  du = dx  and  v = –cos(x) dx . 

  uv – ⌡⌠   v du =  ( x )( –cos(x) ) – ⌡⌠  – cos(x)  dx  =  – x.cos(x) + sin(x) + C . 

  

 (b) ⌡⌠

a

b
  x.e5x dx.   Put  u = x  and  dv = e5x dx.  Then  du = dx  and  v = 

1
5  e5x . 

  uv – ⌡⌠   v du =  ( x )( 
1
5  e5x ) – ⌡⌠  

1
5  e5x  dx  =  

1
5  x.e5x  –  

1
25  e5x  + C . 

 

Practice 3: ⌡⌠   ln(x) dx.  Put  u = ln(x)  and  dv = dx.  Then  du =  
1
x  dx  and  v = x. 

  uv – ⌡⌠   v du =  ln(x).x –  ⌡⌠   x. 1x  dx  =  x.ln(x) –  ⌡⌠  1 dx = x.ln(x) – x + C . 

 ⌡⌠

1

e
   ln(x) dx  =  x.ln(x) – x |

e

1
   =  { e.ln(e) – e } – { 1.ln(1) – 1 }  =  { e – e } – { 0 – 1 }  =  1 . 
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Practice 4: Example 5:  ⌡⌠   xn ln(x) dx  =  
xn+1

n + 1  { ln(x) –  
1

n + 1  } + C .  

 (a) n = 2:  ⌡⌠   x2 ln(x) dx  =  
x3

3    { ln(x) –  
1
3  } + C .  

 (b) n = 0:  ⌡⌠   ln(x) dx  =  
x1

1    { ln(x) –  
1
1  } + C  =  x.ln(x) – x + C . 

 
Practice 5:   ⌡⌠   xn sin(x) dx .   Put  u = xn  and  dv = sin(x) dx.  Then  du = nxn–1 dx   and  v = –cos(x) . 

  uv – ⌡⌠   v du =  ( xn )( –cos(x) )  –   ⌡⌠  – cos(x) nxn–1 dx  

   =  – xn cos(x)   +  n ⌡⌠ xn–1  cos(x)  dx . 

 

Practice 6:  (Similar to Example 7)    
 ⌡⌠   ex sin(x) dx .   Put  u = ex  and  dv = sin(x) dx.  Then  du = ex dx  and v = –cos(x) dx. 

  uv – ⌡⌠   v du =  ( ex )( –cos(x) )  –   ⌡⌠  – cos(x) ex dx  

   = – ex cos(x) + ⌡⌠   ex cos(x) dx .   

  (For the last integral, put u = ex , dv = cos(x) dx, du = ex dx, v = sin(x) dx ) 
   = – ex cos(x) + ⌡⌠   ex cos(x) dx  =  – ex cos(x) + { ex sin(x) –  ⌡⌠   ex sin(x) dx } 

  So  2 ⌡⌠   ex sin(x) dx =    – ex cos(x) +  ex sin(x) 

 and    ⌡⌠  ex sin(x) dx =   
1
2  { – ex cos(x) +  ex sin(x) } + C . 

 
 
 


