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14.7   TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES 
“In physics everything is straight, flat or round.”  Statement by a physics teacher 
 

Maybe not, but lots of applications have pieces of round or spherical domains, and using cylindrical or 

spherical coordinates can make many triple integrals much easier to evaluate. 
 

 

!!! f dV   in Cylindrical Coordinates 

 

If our domain of integration is round or is easily described using polar coordinates 

 

(r, !), then a triple 

integral in cylindrical coordinates 

 

(r, !,  z) is often the best method, and it begins with the form of the  

 

!V . 

Fig. 1 illustrates that if we partition each of r, 

 

!  and z, then the volume of each little cell is  

 

!V = (r " !#) " !r " !z  . 

Then the triple Riemann sum is 

 

! ! ! f(r*,"*,z*) # r # $r # $" # $z.  If  f is 

continuous, then the limit of this Riemann sum as  

 

!r,  !",  !z # 0  is the triple integral in cylindrical 

coordinates 

      

 

f dV
R
!!! =

z
!

"
!

r
! f(r,",z) r dr  d"  dz  .      

 

As before, we can alter the order of the integrals as 

long as we accurately describe the domain of 

integration.  Also, the outer integral endpoints must be constants, the middle integral endpoints can have 

only one variable, and the inner integral endpoints can have two variables. 
 

(Note:  Recall that 

 

x = r !cos(")  , 

 

y = r ! sin(")  so 

 

x2 + y2 = r2   and z=z .) 

 

Example 1: Evaluate  (a) 

 

f dV
R
!!!   for  

 

f(r,!,z) = r "z  with   

 

R = {1! r ! z, 0 ! " ! # ,  0 ! z ! 2} 

 and  (b) 

 

r=0

3

!  
" =0

2#

!  
z=0

e$r
2

! 1 r dz  d"  dr  

 

Solution:  (a) 

 

f dV
R
!!! =

z=0

2

!  
" =0

#

!  
r=1

z

! (r $ z)  r dr  d"  dz

 

=
z=0

2

!  
" =0

#

!  1
3
r3$ 

% 
& 
'  r=1

z|  d"  dz

 

=
z=0

2

!
1
3
z4 " z( )#  dz = 22

15
#  

 (b) 

 

r=0

3

!  
" =0

2#

!  
z=0

e$r
2

! 1 r dz  d"  dr

 

=
r=0

3

!  
" =0

2#

! e$r
2% 

& 
' 
(  r  d"  dr

 

=
r=0

3

! 2" e#r
2$ 

% 
& 
'  r  dr

 

= !"e!r
2

r=0
3| = " 1! e!9( )  
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Practice 1:  Evaluate (a) 

 

 dV
R
!!!   for  

 

R = {0 ! r ! 2, 0 ! " ! # /2, 0 ! z ! 8 - r3}  and 

 (b) the volume of the solid cylinder above the disk 

 

x2 + y2 ! 4   and below the plane z=4-y. 

 

Example 2:   R is the solid bounded by the paraboloid 

 

z = x2 + y2  and the  

  plane  z=4 (Fig. 2). 

 (a) Write and evaluate an iterated triple integral for the volume of R. 

 (b) Write and evaluate an iterated triple integral for the mass of R if  

       the density is 

 

!(x,y,x) = 1+ z . 
 

Solution:   (a)  The domain of this integral is the circle 

 

x2 + y2 ! 4   so 

 

r2 ! 4   and 

 

0 ! " ! 2# : 

 

 

R
!!! f dV =

" =0

2#

!
r=0

2

!
z=r 2

4

! (1)  r dz  dr  d"  

 

=
! =0

2"

#
r=0

2

# z $ r( ) z=r 2
4|  dr  d!  

 

=
! =0

2"

#
r=0

2

# 4r $ r3( )  dr  d!  

 

= 8!  

 (b) 

 

mass =
! =0

2"

#
r=0

2

#
z=r 2

4

# (1 + z) $ r dz  dr  d! =
88
3
"  

 

Practice 2:  R is the solid hemisphere 

 

x2 + y2 + z2 ! 4   with 

 

z ! 0  (Fig. 3). 

 (a) Write and evaluate an iterated triple integral for the volume of R. 

 (b) Write and evaluate an iterated triple integral for the mass of R if           

        the density is 

 

!(x,y,x) = 1+ z . 
 

Example 3: Find the centroid of the solid that is bounded below by the disk 

 

x2 + y2 ! 9   and above by the 

paraboloid 

 

z = x2 + y2. 

Solution: 

 

x2 + y2 ! 9  means  0≤r≤3, and  

 

z = x2 + y2 means  

 

z = r2  , the domain is 

 

 

R = {(r,!,z) :  0 " r " 3, 0 " ! " 2#,  0 " z " r2}  

 

 

mass =
! =0

2"

#  
r=0

3

#  
z=0

r 2

#   r $ dz $ dr $ d!

 

=
! =0

2"

#  
r=0

3

#  r $ z z=0
r 2

|  dr $ d!

 

=
! =0

2"

#  
r=0

3

#  r3  dr $ d! =
81
2
"  

 

 

Mxy =
! =0

2"

#  
r=0

3

#  
z=0

r 2

#  z $ r  dz $ dr $ d!

 

=
! =0

2"

#  
r=0

3

#  r $ z
2

2 z=0
r 2

|  dr $ d!

 

=
! =0

2"

#  
r=0

3

#  r
5

2
 dr $ d!  

            

 

=
! =0

2"

#  
r=0

3

#  r
6

12 t=0
3|  d! = 2" 729

12
$ 
% 

& 
' =

243
2

"   . 

 Then   

 

z =
(243/2)!
(81/2)!

= 3.  Because of the symmetry about the z-axis, 

 

x  and 

 

y  are both 0  

 so the centroid is  (0, 0, 3). 
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!!! f dV   in Spherical Coordinates 

 

This development is very similar to what was done for cylindrical coordinates.  First we partition our 

domain R into  

 

(!",!#,!$)  cells, pick a representative point 

 

(!*,"*,#*)  in each cell, form the triple 

Riemann sum  

 

! ! ! f("*,#*,$*)  %V , and, finally, take the limit as all of the cell dimensions approach 0 

in order to form a triple integral:

 

lim
!"0

 

! ! ! f("*,#*,$*)  %V

 

!
R
""" f(#,$,%) & dV  

But before we can actually use this idea, we first need to determine dV in terms of the variables  

 

!, 
 

!

 

!  and 

 

!  .  That is a bit complicated and is derived in the Appendix of this section as well as in the next section 

when Jacobeans are introduced .  In either case, 

 

dV = !2 " sin(#) " d!" d$ " d#   , and then 

 

     

 

R
!!! f(",#,$) % dV =

R
!!! f(",#,$) % "2 % sin($) % d"% d# % d$       

 

As before, the we can use any order of integration that describes the domain as long as the outside integral 

has constant endpoints, and the middle integral has at most one variable endpoint  The inside integral can 

have two variable endpoints. 
 

Example 4:  Represent each domain R using iterated triple integrals. 

 (a)  R is shown in Fig. 4a,   (b)  R is shown in Fig. 4b. 
 

 

 

 

 

 

 

 

 

 

Solution:   (a) 

 

R = {(!,",#) :  0 $ ! $ 2, 0 $ " $ 2%,  0 $ # $ % /4} 

   

 

R
!!! f  dV =

 

!=0

" / 4

#  
$ =0

2"

#  
%=0

2

# f (%,$,!)  %2 & sin(!) & d%& d$ & d!  

 (b) 

 

R = {(!,",#) :  2 $ ! $ 3, % /2 $ " $ 2%,  0 $ # $ % /2} 

   

 

R
!!! f  dV =

 

!=0

" / 2

#  
$ =" / 2

2"

#  
%=2

3

# f (%,$,!)  %2 & sin(!) & d%& d$ & d!  

  All of these integral endpoints are constants so the integrals can done be in any order. 
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Practice 3: Represent each domain R using iterated triple integrals. 

 (a)  R is shown in Fig. 5a,   (b)  R is shown in Fig. 5b. 
 

Example 5:  Determine the mass and 

 

z  for the solid hemisphere with radius 2 

that  is above the xy-plane and has density  

 

!(x,y,x) = 1+ z . 

 

Solution: 

 

R = {(!,",#) :  0 $ ! $ 2, 0 $ " $ 2%,  0 $ # $ % /2}  so 

 mass =

 

!=0

" / 2

#  
$ =0

2"

#  
%=0

2

# (1 + z)  %2 & sin(!) & d%& d$ & d!  

  

 

=
!=0

" / 2

#  
$ =0

2"

#  
%=0

2

# (1 + %&cos(!))  %2 & sin(!) & d%& d$ & d!  

  

 

=
!=0

" / 2

#  
$ =0

2"

#  
%=0

2

# %2 & sin(!) + %3 &cos(!) & sin(!)( )  d%& d$ & d!  

  

 

=
!=0

" / 2

#  
$ =0

2"

#  
8
3
% sin(!) + 4 %cos(!) % sin(!)& 

' 
( 
) % d$ % d!

 

 

=
!=0

" / 2

#   2"
8
3
$ sin(!) + 4 $cos(!) $ sin(!)% 

& 
' 
( $ d!

 

= 2! 2 " sin2(#) $
8
3
"cos(#)% 

& 
' 
( #=0

! / 2
 

  

 

= 2! 2( ) + 2! 8
3

" 
# 

$ 
% =

28
3
!  

 

 

Mxy =
!=0

" / 2

#  
$ =0

2"

#  
%=0

2

# z & (1 + z)  %2 & sin(!) & d%& d$ & d! =
124
15

"      (using Maple) 

  so 

 

z =
(124 /15)!
(28 /3)!

=
32
35

" 0.914  

 Conclusion:  Even a simple looking problem can take a long time. 

 

These conversion formulas for cylindrical and spherical coordinates are useful. 

 Coordinate conversion formulas 

 Cylindrical to Spherical to Spherical to  

 Rectangular Cylindrical Rectangular 

 

 

x = r !cos(") 

 

r = !" sin(#) 

 

x = !" sin(#) "cos($)  

 

 

y = r ! sin(") 

 

z = !"cos(#) 

 

y = !" sin(#) " sin($) 

 

 

z = z 

 

! = !  

 

z = !"cos(#)   

    

 

dV =  dx ! dy ! dz  =  r ! dr ! d" ! dz  =  #2 ! sin($) ! d#! d" ! d$  
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Problems 

In problems 1-8, evaluate the triple integrals in cylindrical coordinates. 

1. 

 

0

!

"
0

1

"
0

2#r 2

" r  dz $ dr $ d%  2. 

 

0

4

!
0

"

!  
r

6

! r  dz # d$ # dr  

3. 

 

0

!

"
0

# /!

"  
0

4$r 2

" z  dz % dr % d#  4. 

 

0

!

"
0

1

"  
#1/2

1/2

" r2 $ sin(%) + z2( )  dz $ dr $ d%    

5. 

 

0

2!

"
0

3

"
0

! / 3

" r3  dr # dz # d$  6. 

 

!1

1

"
0

2#

"  
0

1+sin($ )

" 2r  dr % d$ % dz  

7. 

 

0

2

!
r"2

4"r 2

!  
0

2#

! (r $ sin(%) + 1) $ r  d% $ dz $ dr   8. 

 

0

!

"
r

2r

"  
0

!

" r #cos($)  d$ # dz # dr   

In problems 9 to 12, evaluate the integrals in cylindrical coordinates. 

9. 

 

0

4

!
0

2 /2

!  
x

1"x 2

! e"(x 2 + y 2)  dy # dx # dz  10. 

 

0

4

!
"1

1

!  
" 1"x 2

1"x 2

! 1 dy # dx # dz
  

11. 

 

0

1

!
0

1"x 2

!  
0

4"y

! 1 dz # dy # dx  12. 

 

!2

2

"
0

4!x 2

"  
0

1

" cos(x2 + y2)  dz # dy # dx   

In problems 13 to 18, set up and evaluate the triple integrals in cylindrical coordinates. 

13.  

 

f (x,y) = x2 + y2  .  R is the region inside the cylinder 

 

x2 + y2 = 9   and between the planes z=3 and z=5. 

14. 

 

f (x,y) = (x3 + xy2) .  R is the region in the first octant and under the paraboloid   

 

z = 4 ! x2 ! y2  . 

15. 

 

f = ez . R is the region enclosed by paraboloid   

 

z = 1+ x2 + y2 , the cylinder  

 

x2 + y2 = 7 , and the xy-plane. 

16. 

 

f = x2  .  R is the region inside the cylinder  

 

x2 + y2 = 4  , below the cone 

 

z2 = 9x2 + 9y2    and above 

the xy-plane. 

17. Find the volume of the region R in first octant below the 

 

z = x2 + y2 and above  

 

z = 36 ! 3x2 ! 3y2. 

18. 

 

f(x,y) = 6 + 4x2 + 4y2 .  R is the region in the 2nd, 3rd and 4th octants, inside the cylinder 

 

x2 + y2 = 1,  

and between the planes z=2 and z=3. 

 

Now spherical 

In problems 19 to 26 evaluate the integrals in spherical coordinates. 

19. 

 

0

!

"
0

!

"
0

2#cos($)

"  %2 # sin($)  d%# d$ # d&  20. 

 

0

2!

"
0

! / 4

"  
0

2

"  #3 $ sin2(%)  d#$ d% $ d&   

21. 

 

0

!

"
0

!

"  
0

1

"  5#3 $ sin3(%)  d#$ d% $ d&  22. 

 

0

!

"
0

! / 3

"  
sec(#)

1

"  3$2 % sin(#)  d$% d# % d&   
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23. 

 

0

! / 2

"  
0

!

"  
1

2

"  #2 $ sin(%)  d#$ d& $ d%  24. 

 

0

!

"  
0

!

"  
0

1

"  e # 2( ) $ # $ sin(%)  d#$ d& $ d%   

25. 

 

0

!

"
0

! / 3

"  
0

cos(#)

"  4$3 % sin(#)  d$% d# % d&  26. 

 

0

2!

"
0

! / 2

"  
0

csc(#)

"  sin(#)  d$% d# % d&   

  

Practice Answers 

Practice 1: (a) 

 

r=0

2

!  
" =0

# / 2

!  
z=0

8$r 3

! r dz  d"  dr 

 

=
z=0

2

!  
" =0

# / 2

!  z $ r( )  z=0
8%r 3

|  d"  dr  

 

=
z=0

2

!  
" =0

# / 2

!  8r $ r4  d"  dr  

 

 

=
z=0

2

!   "
2

(8r # r4 )  dr  

 

= !
2
48
5

" 
# 

$ 
% 
 

 (b)  

 

y = r ! sin(") so  

 volume 

 

=
r=0

2

!  
" =0

2#

!  
z=0

4–r$sin(" )

! 1 r dz  d"  dr

 

=
r=0

2

!  
" =0

2#

! 4 $ r % sin("( ) % r  d"  dr

 

=
r=0

2

! 2" 4r( )  dr =16"  

Practice 2: 

 

z2 ! 4 " (x2 + y2) = 4 " r2  , and, as in Example 1, 0≤r≤2  and 

 

0 ! " ! 2# . 

 (a) 

 

volume =
! =0

2"

#
r=0

2

#
z=0

4$r 2

# (1) % r dz  dr  d!  

 

=
! =0

2"

#
r=0

2

# z $ r z=0
4%r 2

|  dr  d!  

 

=
! =0

2"

#
r=0

2

# 4 $ r2 % r  dr  d!  

  

 

=
! =0

2"

#
r=0

2

# 4 $ r2 % r  dr  d!  

 

=
! =0

2"

# $
1
3

4 $ r2( )3/2% 
& ' 

( 
) * r=0

2|  d! =
! =0

2"

#
8
3

 d! =
16
3
"  

 (b) 

 

mass =
! =0

2"

#
r=0

2

#
z=0

4$r 2

# (1 + z) % r dz  dr  d!  

 

=
28
3
!  

Practice 3:  (a) 

 

R = {(!,",#) :  0 $ ! $ 2, 0 $ " $ 2%,  % /3 $ # $ % /2} 

  

 

!=" / 3

" / 2

#  
$ =0

2"

#  
%=0

2

# f (%,$,!)  %2 & sin(!) & d%& d$ & d!  

 (b)  Clearly 

 

0 ! " ! 2# ,   but 

 

!  and 

 

! require a bit of work (Fig. Pr4): 

     

 

R = {(!,",#) :  2sec(#) $ ! $ 4, 0 $ " $ 2%,  0 $ # $ % /3} 

     

 

!=0

" / 3

#  
$ =0

2"

#  
%=2sec(!)

4

# f (%,$,!)  %2 & sin(!) & d%& d$ & d!  
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Appendix :   Why  dV = !2 " sin(#) " d!" d$ " d#  

 

 The figures A1-A3 are an attempt to explain where 

this strange equation comes from.  We need to 

partition the space by partitioning each of the three 

variables  

 

! , 

 

!  and  

 

! .  This results in cells as 

shown greatly magnified in Fig. A1.  Using different 

views of a typical cell in Fig. A2, it is possible to 

determine the lengths of the sides of this cell.  Putting 

all of this together in Fig. A3, the volume of the cell, 

 

!V  ia the product of the lengths of the sides: 

 

 

dV = !2 " sin(#) " d!" d$ " d#    

 

 

 

 


