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15.5 Green’s Theorem 
 

Green’s Theorem makes statements about the equivalence between what happens on the boundary of a 2D 

region with what is happening on the inside of the region.  It says, in two ways, that a single integral around 

the boundary is equal to a double integral over the region enclosed by the boundary.  In this way Green’s 

Theorem is similar to the Fundamental Theorem of Calculus which relates the area above an interval to the 

values of the antiderivatives at the boundary (endpoints) of the interval. 

 

As with some other theorems in mathematics. Green’s Theorem allows us to trade one calculation for 

another one that may be easier.  And it shows connections between ideas that do not seem to be related. 

 

 

 Green’s Theorem:   

 If   C is a simple, closed, and piecewise smooth curve (Fig. 1) and  

  

 

F(x,y) = M(x,y), N(x,y) = Mi + Nj  where M and N have continuous first partial  

  derivatives in the region R enclosed by C, 
 

 then      

 

C
! F • T ds 

 

=
C
! M dx + N dy 

 

=
R
!!

"N
"x

#
"M
"y

$ 
% & 

' 
( )  dA   Circulation-Curl Form 

 and     

 

C
! F • n ds =

C
! M dy" N dx =

R
!!

#M
#x

+
#N
#y

$ 
% & 

' 
( )  dA . Flux-Divergence Form 

 

Notation:   The little circle on the integral sign indicates that C is a closed 

path parameterized in the counterclockwise direction.. 
 

The first conclusion says that the circulation is the accumulation of the 

interior curl.  The second says that the flux is the accumulation of the 

interior divergence.  It may help you make these connections by 

remembering that both circulation and curl deal with rotation while both 

flux and divergence deal with dissipation.   
 

A proof for simple regions is given in the Appendix of this section. 
 

Example 1:  For 

 

F=

 

x – y, x   and  

 

r(t) = 2 !cos(t), 2 ! sin(t)   (Fig. 2), 

evaluate  

 

C
! Mdx +Ndy( )  and 

 

R
!!

"N
"x

#
"M
"y

$ 
% & 

' 
( )  dA  .  
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Solution:  First we need to write everything in terms of t: 

 

 

M = 2 !cos(t) – 2 ! sin(t),   N = 2 !cos(t),  dx = –2sin(t) dt,  dy = 2 !cos(t) dt .  Then 

 

 

C
! Mdx +Ndy( ) =

t=0

2"

! (2 #cos(t) – 2 # sin(t))(–2sin(t)) + (2 #cos(t))(2 #cos(t))  dt

 

=
t=0

2!

" 4 # 4cos(t) $ sin(t) dt = 8! . 

 The circulation is 8

 

!   . 

 

 

!N
!x

= 1,  

 

!M
!y

= –1  so  

 

!N
!x

"
!M
!y

= 2 and 

 

R
!! 2( )  dA = 2(area of circle of radius 2) = 8"  . 

 As promised by the first conclusion of Green’s Theorem, these two values are equal, and in 

this case the double integral was much easier to evaluate. 
 

Practice 1:  For 

 

F=

 

x – y, x   and  

 

r(t) = 2 !cos(t), 2 ! sin(t) , evaluate  

 

C
! Mdy – Ndx( )  and 

 

R
!!

"M
"x

+
"N
"y

# 
$ % 

& 
' (  dA . 

  

Example 2: Evaluate  

 

C
! Mdy"Ndx  and 

 

R
!!

"M
"x

+
"N
"y

# 
$ % 

& 
' (  dA  for  

 

F=

 

–y,x   and the triangular region R 

bounded by the x-axis, the line x=2 and the line y=x  (Fig. 3). 
 

Solution: 

 

!M
!x

= 0  and  

 

!N
!y

= 0  so  we immediately have  

 

R
!!

"M
"x

+
"N
"y

# 
$ % 

& 
' (  dA = 0.  

The flux is 0. 

 The boundary of R consists of 3 line segments: 

 

C1 = 2t,0 , C2 = 2,2t ,  and C3 = 2 – 2t,2 – 2t  with 0 ! t ! 1.  We 

need that choice for 

 

 C3 in order for the orientation to be 

counterclockwise. 

 On 

 

C1 , 

 

t=0

1

!  Mdy" Ndx =
t=0

1

! (–0)(2) – (2t)(2) dt =
t=0

1

!  - 4t dt = –2 . 

 On 

 

C2  , 

 

t=0

1

!  Mdy" Ndx =
t=0

1

! (–2t)(2) – (2)(0) dt =
t=0

1

!  - 4t dt = –2 . 

 On 

 

C3 , 

 

t=0

1

!  Mdy" Ndx =
t=0

1

! (2t – 2)(-2) – (2 – 2t)(–2) dt =
t=0

1

!  8 - 8t dt = 4  . 

 So 

 

C1
! +

C2
! +

C3
! = ("2) + ("2) + (4) = 0 .  Certainly the double integral was easier. 

Practice 2: Evaluate 

 

C
! Mdx +Ndy( ) and 

 

R
!!

"N
"x

#
"M
"y

$ 
% & 

' 
( )  dA   for  

 

F=

 

–y,x   and the triangular  

 region R bounded by the x-axis, the line x=2 and the line y=x . 
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Green’s Theorem can also be used to evaluate line integrals. 

 

Example 3:  Evaluate 

 

C
! x2y dy – y2 dx   where C is the boundary of the rectangle  

 

 

R = (x,y) :  0 ! x ! 2, 0 ! y ! 1{ }  oriented counterclockwise. 

Solution:  If we can match the form of the line integral with one of the forms of Green’s Theorem then we 

can evaluate one double integral instead of the four line integrals around R. 

 If we use the Flux-Divergence form 

 

C
! Mdy" Ndx =

R
!!

#M
#x

+
#N
#y

$ 
% & 

' 
( )  dA  then we need 

 

 

M = x2y and N = y2  so 

 

C
! x2y dy – y2 dx =

R
!! 2xy + 2y( )  dA =

0

1

!
0

2

! 2xy + 2y( )  dx dy 

 

=
0

1

! 8y dy = 4 . 

Practice 3:  Use the Circulation-Curl form of Green’s Theorem to evaluate the same line integral on the 

same region R. 
 

In the previous examples we always traded a line integral for a double integral, but sometimes the opposite 

trade is useful. 
  
Using Green’s Theorem to Find Area 
 

If  the boundary of R is a simple closed curve C then  

 

area of R =
R
!! 1 dA  .  If we can find M and N so 

that 

 

!M
!x

+
!N
!y

= 1  then we can use 

 

R
!! 1 dA =

R
!!

"M
"x

+
"N
"y

# 
$ % 

& 
' (  dA =

C
! Mdy) Ndx .  Putting 

 

M =
x
2

  and N =
y
2

  works so 

 

R
!! 1 dA =

R
!!

"M
"x

+
"N
"y

# 
$ % 

& 
' (  dA =

C
! Mdy) Ndx . 

 

 

     If the boundary of R is a simple closed curve C, then   

 

area of R =
1
2
C
! x dy " y dx.      

 

Example 4:  Use this result to determine the area of the elliptical region 

 

x2

4
+
y2

25
! 1 . 

Solution:  The boundary of this region can be parameterized by 

 

r(t) = 2cos(t), 5sin(t)  . 

 Then   

 

area =
1
2
C
! (2cos(t))(5cos(t))" (5sin(t))("2sin(t)) dt =

1
2

0

2#

! 10 dt = 10#  . 

Practice 4: Use the same method to determine the area of the general elliptical region 

 

x2

a2
+
y2

b2
! 1 . 
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Green’s Theorem in More General Regions 
 

The proof  of Green’s Theorem in the Appendix is valid for simple regions R 

(Fig. 4) in the plane for which any line parallel to an axis cuts the region R in 

at most 2 points or along an edge of R. 
 

But Green’s Theorem is true in much more complex regions if  

they can be decomposed into a union of simple regions.   
 

If the region R is “bent,” (Fig. 5) there are usually a finite number 

of cuts parallel to an axis so that R is the union of the some 

simple regions.   Since the counterclockwise orientation on each 

simple region moves along each cut once in each direction (Fig. 

6) the sum of those integral pieces is 0 and we are left with the 

integral around the original boundary of R.   
 

Practice 5:  Decompose the region in Fig. 7 into several simple regions.   

 Indicate the direction(s) of the paths along each cut. 
 

Similarly, if R contains a finite number of holes (Fig. 8), then we can again create a 

single boundary for R by adding paths that connect to the holes.  Then the 

integral along this new path will be the sum of the counterclockwise integrals 

around the outer boundary of R minus the sum of the counterclockwise 

integrals around the holes.  The integrals along the added paths sum to 0 since 

they are traveled once in each direction.  Remember, for a counterclockwise 

orientation of the curve C the region is always on our left hand side as we walk 

along C. 
 

Practice 6:  Decompose the region in Fig. 9 into  

 several simple regions.  Indicate the  

 directions and order of the paths along  

 each cut. 
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Example 5:  An interesting situation. 

 

F(x,y) =
–y

x2 + y2 , 
x

x2 + y2
 .  

Let 

 

C1 be any simple closed curve that does not enclose 

the origin and let 

 

C2  be a simple closed curve that does 

enclose the origin (Fig. 10).  Use the Circulation-Curl 

form of Green’s Theorem to calculate the circulations 

around  

 

C1 and 

 

C2  . 

 

Solution:  On  

 

C1 circulation  

 

C
! F • T ds

 

=
C
! M dx + N dy =

R
!!

"N
"x

#
"M
"y

$ 
% & 

' 
( )  dA. 

 

 

!M
!y

=
x2 + y2( )(–1) – (–y)(2y)

x2 + y2( )2
=

y2 – x2

x2 + y2( )2
.   

 

!N
!x

=
x2 + y2( )(1) – (x)(2x)

x2 + y2( )2
=

y2 – x2

x2 + y2( )2
 so  

 

!N
!x
–
!M
!y

= 0 

 so  

 

circulation =
C
! M dx + N dy =

R
!!

"N
"x

#
"M
"y

$ 
% & 

' 
( )  dA

 

=
R
!! 0  dA = 0  on 

 

C1 . 

 Lets begin the “encloses the origin” by looking at the particular circle C that encloses the origin: 

 

r(t) = h !cos(t), h ! sin(t)  for a positive value of h.  In this case we can work with the line 

integral for circulation directly by putting everything in terms of t: 

 

circulation =
C
! M dx + N dy

 

=
0

2!

"
–h # sin(t)

h2
$ 
% & 

' 
( ) –h # sin(t)( ) +

h #cos(t)
h2

$ 
% & 

' 
( ) h #cos(t)( ) dt

 

=
0

2!

" 1 dt = 2!  . 

If 

 

C2  is any simple closed curve that encloses the origin, we can take  h small enough that the 

circle C is inside  

 

C2 .  Then the region R bounded by D= the union of  

 

C2  counterclockwise and 

C clockwise  (Fig 10) does not contain the origin so  

 

0 =
D
! =

C2
! +

C
! =

C2
! + ("2# )  

and  

 

{circulation around C2} =
C2

! M dx + N dy = 2" . 

For this vector field the circulation is 0 for any simple closed curve that does not surround the 

origin, and the circulation is always 

 

2!  for any simple. closed, positively-oriented curve that does 

surround the origin.   
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Problems 

In problems 1 to 6 evaluate the line integral directly and by using Green’s Theorem where C is positively 

oriented. 

1. 

 

C
! x2y dx + 3y dy when C is the rectangle 0≤x≤2, 0≤y≤1. 

2. 

 

C
! xy2 dx + 5xy dy  when C is the square 0≤x≤2, 0≤y≤2. 

3. 

 

C
! 3xy dx + 2x2 dy  when C is the triangle with vertices (0,0), (1,0) and (1,2). 

4. 

 

C
! x2 dx + xy dy  when C is the triangle with vertices (0,0), (0,2) and (2,2). 

5. 

 

C
! ax dx + by dy  when C is the circle 

 

x2 + y2 = r2 . 

6. 

 

C
! ay dx + bx dy  when C is the circle 

 

x2 + y2 = r2 . 

In problems 7 to 10 use Green’s Theorem to find the counterclockwise circulation and the outward flux for 

the field F and the curve C. 

7. 

 

F = x +2y,y – x  , C is the square 0≤x≤2, 0≤y≤2. 

8. 

 

F = 3x +2y,4y – 5x  , C is the rectangle 0≤x≤3, 0≤y≤1. 

9. 

 

F = x2 +y2,x2 - y2 , C is the triangle with vertices (0,0), (0,2) and (2,2). 

10.  

 

F = x2y,3x +y2  ,  C is the triangle bounded by the lines  x=0, y=1 and x=2y. 

 

In problems 11 and 12 use Green’s Theorem to find the area enclosed by the curve C. 

11. C is given by 

 

r(t) = t, t2  as t goes from –2 to 2 and by 

 

r(t) = t, 8 – t2  as t goes from 2 to –2. 

12. C is the curve bounded by the x-axis and the cycloid 

 

r(t) = A(t – sin(t)), A(1– cos(t)) . 

  

13.  

 

F = M,N  and 

 

!N
!x
–
!M
!y

= 5  on region R in Fig. P13.  The area of R  is 100, 

and 

 

C2
! F • dr = 20.  Use Green’s Theorem to determine 

 

C1
! F • dr . 
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14. 

 

F = M,N  and 

 

!N
!x
–
!M
!y

= 7   on region R (inside 

 

C1, outside 

 

 C2 ) in Fig. 

P14.   If 

 

C2
! F • dr = 3" , use Green’s Theorem to determine 

 

C1
! F • dr . 

 

 

 
 

15. 

 

F = M,N  and 

 

!N
!x
–
!M
!y

= 9 on region R in Fig. P15, 

 

C2
! F • dr = 3"  and  

 

C3
! F • dr = 4"  . Use Green’s 

Theorem to determine 

 

C1
! F • dr . 

16. 

 

F = M,N  and 

 

!N
!x
–
!M
!y

= 5 on region R in Fig. P16, and  

 

C2
! F • dr = 2" .  . Use Green’s Theorem to determine 

 

C1
! F • dr . 

 

17. Show that the circulation and flux of a constant field 

 

F = a,b  are 0 over 

every simply connected region R. 
 

18. Show that the flux across any counterclockwise oriented simple closed 

curve C of a linear vector field 

 

F = ax +by, cx +dy   is always a constant multiple of the area of the 

region enclosed by C.  Find the constant.  
 

19. Show that the circulation around any counterclockwise oriented simple closed curve C of a linear 

vector field 

 

F = ax +by, cx +dy   is always a constant multiple of the area of the region enclosed by 

C.  Find the constant. 
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Practice Answers 

Practice 1: 

 

M = 2 !cos(t) – 2 ! sin(t),   N = 2 !cos(t),  dx = –2sin(t) dt,  dy = 2 !cos(t) dt , 

 

!M
!x

= 1,  

 

!N
!y

= 0 

 

 

C
! Mdy – Ndx( ) =

t=0

2"

! ((2 #cos(t) – 2 # sin(t))(2 #cos(t)) – (2 #cos(t)(–2sin(t)) dt

 

=
t=0

2!

" 4 #cos2(t) dt = 4!  . 

 

 

R
!!

"M
"x

+
"N
"y

# 
$ % 

& 
' (  dA =

R
!! 1 + 0( )  dA

 

=
R
!! 1( )  dA =1(area of circle of radius 2) = 4" . 

 As promised by the second conclusion of Green’s Theorem, these two values are equal. 

 

Practice 2: 

 

!N
!x

= 1  and 

 

!M
!y

= "1  so 

 

R
!!

"N
"x

#
"M
"y

$ 
% & 

' 
( )  dA =

R
!! 2( )  dA = 2(triangle area) = 2(2) = 4 .  

 The circulation is 4.  

 

 

F=

 

–y,x .  

 

C1 = 2t,0 , C2 = 2,2t ,  and C3 = 2 – 2t,2 – 2t  with 0 ! t ! 1. 

 On 

 

C1 , 

 

t=0

1

!  Mdx + Ndy =
t=0

1

! (–0)(2) +(2t)(0) dt =
t=0

1

!  0 dt = 0 . 

 On 

 

C2  , 

 

t=0

1

!  Mdx + Ndy =
t=0

1

! (–2t)(0) +(2)(2) dt =
t=0

1

!  4 dt = 4  . 

 On 

 

C3 , 

 

t=0

1

!  Mdx + Ndy =
t=0

1

! (2t – 2)(–2) +(2 – 2t)(–2) dt =
t=0

1

!  0 dt = 0 . 

 

 

C1
! +

C2
! +

C3
! = (0) + (4) + (0) = 4 .  Again the double integral was easier. 

 The flows along 

 

C1 and 

 

C3  make sense in terms of Fig. 3.  Along 

 

C1 and 

 

C3   the vector field is 

perpendicular to the boundary so there is no flow. 

Practice 3: 

 

C
! x2y dy – y2 dx =

C
! Mdx +Ndy( ) =

R
!!

"N
"x

#
"M
"y

$ 
% & 

' 
( )  dA so  

 

M = –y2 and N = x2y . 

 

 

C
! x2y dy – y2 dx =

R
!! 2xy + 2y( )  dA =

0

1

!
0

2

! 2xy + 2y( )  dx dy

 

=
0

1

! 8y dy = 4 . 

Practice 4: Take 

 

r(t) = a !cos(t), b ! sin(t)  .  Then 

              

 

area =
1
2
C
! (a "cos(t))(b "cos(t))# (b " sin(t))(#a " sin(t)) dt =

1
2

0

2$

! ab dt = ab$  . 

 

Practice 5:  See Fig. 7 

 

Practice 6:  Fig. 9 shows one solution. 
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Appendix A:  Proof of Green’s Theorem for Simple Regions 
 

A simple region R is one in which lines parallel to an axis intersect the 

boundary of R in at most two places (Fig. A1). 
 

Label Fig. A2 so 

 

f1(x) ! y ! f2(x) for a≤x≤b. 

 

C1 is the curve 

 

y = f1(x) 

oriented counterclockwise as x goes from a to b , and 

 

C2  is 

 

y = f2(x)  

which has a counterclockwise orientation as x goes from b to a.  The  

closed curve C is the union of 

 

C1 and 

 

C2 .  With labeling we will compute 

 

C
! M dx and 

 

R
!!

"M
"y

 dA. 

 

C
! M dx =

C1

! M dx +
C2

! M dx  

 

=
a

b

! M(x,f1) dx +  
b

a

! M(x,f2) dx 

 

=
a

b

! M(x,f1) dx –  
a

b

! M(x,f2) dx 

 

=
a

b

! M(x,f1) dx –  M(x,f2) dx . 

 

R
!!

"M
"y

 dA =
a

b

!
f1

f2

!
"M
"y

 dy dx 

 

=
a

b

! M(x,f2) " M(x,f1) dx    so 

 

C
! M dx = –

R
!!

"M
"y

 dA      (1) 

 

To get the other part of the result we need, re-label the region R as in Fig. A3 

so 

 

x = g1(y)  for c≤y≤d. 

 

C1  is the curve 

 

x = g1(x)  oriented 

counterclockwise as y goes from c to d, and 

 

C2  is 

 

x = g2(y) which has 

counterclockwise orientation as y goes from d to c. With this labeling we 

will compute 

 

C
! N dy and 

 

R
!!

"N
"x

 dA . 

 

C
! N dy =

C1

! N dy +
C2

! N dy 

 

=
c

d

! N(g2,y) dy +  
d

c

! N(g1,y) dy 

 

 

=
c

d

! N(g2,y) dy –  
c

d

! N(g1,y) dy 

 

=
c

d

! N(g2,y) –  N(g1,y) dy  

 

R
!!

"N
"x

 dA =
c

d

!
g1

g2

!
"N
"x

 dx dy 

 

=
c

d

! N(g2,y) " N(g1,y) dy    so 

 

C
! N dy =

R
!!

"N
"x

 dA    (2) 

 
Adding result (1) and result (2)),  we have  

 

C
! M dx +  N dy =

R
!!

"N
"x

–
"M
"y

 dA  , the Circulation-Curl 

form of Green’s Theorem. 
 

 

Using a similar approach, you can show that   

 

–
C
! N dx =

R
!!

"N
"y

 dA   and 

 

C
! M dy =

R
!!

"M
"x

 dA   so   

  

 

C
! M dy – N dx =

R
!!

"M
"x

+
"N
"y

 dA ,  the Flux-Divergence form of Green’s Theorem. 
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On a Modified Simple Region 
 

Suppose the region R has one edge that if parallel to the y-axis (Fig. A4) labeled 

so 

 

f1(x) ! y ! f2(x) for a≤x≤b. 

 

C1 is the curve 

 

y = f1(x) oriented 

counterclockwise as x goes from a to b , and 

 

C2  is 

 

y = f2(x)  which has a 

counterclockwise orientation as x goes from b to a. 

 

C3 is oriented 

counterclockwise with x=a as y goes from d to .The closed curve C is the union 

of 

 

C1, 

 

C2  and 

 

C3. 

 

C
! M dx and 

 

R
!!

"M
"y

 dA. 

 

C
! M dx =

C1

! M dx +
C2

! M dx +
C3

! M dx

 

=
a

b

! M(x,f1) dx +  
b

a

! M(x,f2) dx +  
a

a

! M(x,f2) dx 

 

 

=
a

b

! M(x,f1) dx +  
b

a

! M(x,f2) dx

 

=
a

b

! M(x,f1) dx –  
a

b

! M(x,f2) dx 

 

=
a

b

! M(x,f1) dx –  M(x,f2) dx . 

 

R
!!

"M
"y

 dA =
a

b

!
f1

f2

!
"M
"y

 dy dx

 

=
a

b

! M(x,f2) " M(x,f1) dx     so    

 

C
! M dx = –

R
!!

"M
"y

 dA . 

To get the other part of the result we need, label the region R as in Fig. A5 so 

 

C1  is the curve 

 

 x = g(y)  

oriented counterclockwise as y goes from c to d, and 

 

C2  is 

 

x = a which has counterclockwise orientation 

as y goes from d to c. With this labeling we will compute 

 

C
! N dy and 

 

R
!!

"N
"x

 dA . 

 

C
! N dy =

C1

! N dy +
C2

! N dy

 

=
c

d

! N(g,y) dy +  
d

c

! N(a,y) dy 

 

 

=
c

d

! N(g,y) dy –  
c

d

! N(a,y) dy

 

=
c

d

! N(g,y) –  N(a,y) dy 

 

R
!!

"N
"x

 dA =
c

d

!
a

g

!
"N
"x

 dx dy

 

=
c

d

! N(g,y) " N(a,y) dy    so  

 

C
! N dy =

R
!!

"N
"x

 dA   and, adding these results, 

 

C
! M dx +  N dy =

R
!!

"N
"x

–
"M
"y

 dA 

Other “simple” regions can be handled in similar ways. 

 

The proof for general regions is difficult and is not included here. 

 

If the region R lies on a plane in 3D (R is flat), then after a rotation of axes R can be made to lie in a new 

x’y’-plane and Green’s Theorem applies. 

 


