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15.8  Surface Integrals  
 

Chapter 4 introduced integrals on intervals, Section 15.3 extended these ideas to integrals on paths in 2D and 3D, and 

Chapter 14 extended the ideas to integrals on 2D regions in the plane.  This section goes one step further and 

considers integrals whose domains are parametric surfaces in 3D.  In each previous situation the development was 

similar:  partition, approximate on small pieces, sum, and take limits to achieve an integral.  The approach here is the 

same.  Surface integrals will be important in the coming sections on Stoke’s Theorem and the Divergence Theorem 

and their applications. 
 

Surface Integral for a Scalar Function  
 

If S is a smooth surface in xyz-space parameterized  by  

 

r(u,v) = x(u,v), y(u,v), z(u,v)  with uv-domain R, then a partition of the  

uv-domain into small 

 

!u by !v   rectangles 

 

!R  (Fig. 1) is mapped by r to a  

partition of S into small patches in space with areas 

 

!S(Fig. 2), and the 

previous section showed that the area of each 

 

!S   patch was 

 

 

!S " ruxrv !u # !v .  

 

Let (u*,v*) be a point in the uv-domain R.  Then  

 

r(u*,v*) = x(u*,v*), y(u*,v*), z(u*,v*) = x*, y*, z *  is a point 

on a patch S*. If f(x,y,z) is a scalar-valued function on S, then the 

value of  

 

f(r(u*,v*)) ! "S* is approximately   

 

f(r(u*,v*)) ! "S* # f(r(u*,v*)) ! ru*xrv* "u ! "v .  Adding these values 

together for each of the uv-rectangles we have the Riemann sum 

 

u,v
! f(x*,y*,z*) " #S* =

u,v
! f(r(u*,v*)) " ru*xrv* #u " #v.  Taking 

limits as  

 

!u, !v " 0 , we get 

 

S
!! f(x,y,z)  dS =

R
!! f(r(u,v)) " ruxrv  dA . 

 

 

 If   S is a smooth surface parameterized by  

 

r(u,v) on domain R in the uv-domain,  

  and f(x,y,z) is a scalar-valued function defined on S, 

 then  

 

S
!! f(x,y,z)  dS =

R
!! f(r(u,v)) " ruxrv  dA . 

 
This result enables us to evaluate many surface integrals in 3D as iterated integrals in u and v. 
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Note:  You should notice the similarity of this result with the result for a line integral of a scalar-valued function 

along a curve C: 

 

C
! f ds =

t=a

b

! f(r(t)) " r'(t)  dt  .  In this new situation the curve C is replaced with the surface S, 

and  

 

r'(t)dt  is replaced with  

 

ruxrv dA. 

 
Note:  If  f(x,y,z)=1 for all (x,y,z) on S, then 

 

S
!! 1 dS =

R
!! ruxrv  dA  is 

simply the surface area of S. 
 
 
Example 1:  Let  f(x,y,z)=1+z on the surface S parameterized by 

 

r(u,v) = u !cos(v), u ! sin(v), 3 – u   with  

 

0 ! u ! 2 and 0 ! v ! 2" . (Fig. 3)  (a)  Evaluate  

 

S
!! f(x,y,z)  dS  . 

 (b)  If the units of x, y and z are meters (m) and f is the surface density  

  (

 

g/m2) at location (a,y,z), what are the units of  

 

S
!! f(x,y,z)  dS  ? 

 
Solution: (a) 

 

S
!! f(x,y,z)  dS =

R
!! f(r(u,v)) " ruxrv  dA   so we need 

 

f(r(u,v)),  ru and rv . 

 

 

 ru = cos(v), sin(v), –1 ,  rv = –u ! sin(v), u !cos(v), 0  and 

 

 

ruxrv =
   i               j              k
 cos(v)       sin(v)    –1
–u ! sin(v)  u !cos(v)   0

= –u !cos(v), u ! sin(v), u   so  

 

ruxrv = u 2   . 

 

 

S
!! f(x,y,z)  dS =

R
!! f(r(u,v)) " ruxrv  dA 

 

=
v=0

2!

"  
u=0

2

" [1 + (3# u)](u 2) du dv

 

 

=
v=0

2!

"  2 – 1
3

u3 + 2u2# 
$ 

% 
&  |

u=0

2
 dv  

 

=
v=0

2!

"  16
3

2 dv = 32
3

2!  . 

 (b) 

 

S
!! f(x,y,z)  dS   is the mass of the surface S, and the units are  (

 

g/m2)(

 

m2)= g. 

  
 
Practice 1:  Evaluate 

 

S
!! (2 + x)  dS   on the surface S in Example 1. 

 
Example 2:  Let  f(x,y,z)=xy on the surface S that is the part of the plane  z = 3–x–y that is in the first octant.  

Evaluate   

 

S
!! f(x,y,z)  dS . 

Solution: S can be parameterized by 

 

r(u,v) = u, v, 3 – u – v   for 

 

0 ! u ! 3  and 

 

0 ! v ! 3 – u  .  Then 

 

ru = 1, 0, –1 , 

 

rv = 0, 1, –1 , 

 

ruxrv = 1, 1, 1  and 

 

| ruxrv |= 3   . 

 

f(r(u,v)) = uv  so 

 

S
!! f(x,y,z)  dS =

0

3

!
0

u–3

! uv 3 dv du

 

=
0

u–3

!
3

2
u " (3 – u)2  dv = 3 3  .   

  The units of the answer are  (units of f)(units of S). 
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Practice 2:  Let  f(x,y,z)=x on the surface 

 

S = {(x,y,z) :  x2 + y2 = 3, 0 ! z ! 2} .  Evaluate   

 

S
!! f(x,y,z)  dS . 

 
 

 If      the graph of  f(x,y,z) with  z=g(x,y) is a smooth surface S in xyz-space parameterized by   

     

 

r(u,v) on domain R in uv-space, , 

 then  

 

S
!! f(x,y,z)  dS

 

=
R
!! f(r(u,v)) " 1 + gx( )2 + gy( )2

  dA . 

 
Proof:  We can parameterize this surface by setting  u=x and v=y so 

 

r(u,v) = u, v, g(u,v) . 

 

 

ru = 1, 0, gx   and 

 

rv = 0, 1, gy  so 

 

ruxrv =
i     j     k
1    0    gx
0    1   gy

= –gx, – gy, 1  and 

 

ruxrv = 1+ gx( )2 + gx( )2   

Then  

 

S
!! f(x,y,g(x,y))  dS =

R
!! f(r(u,v)) " 1 + gx( )2 + gx( )2   dA . 

 
Example 3:   Let 

 

f(x,y,z) = z x2 + y2  on the heliocoid surface S parameterized by 

 

r(u,v) = u !cos(v), u ! sin(v), v   with  

 

0 ! u ! 1 and 0 ! v ! 2" .   

 Evaluate  

 

S
!! f(x,y,z)  dS  .  (Fig. 4 shows a heliocoid with 

 

0 ! v ! 4" .) 

  

Solution: 

 

S
!! f(x,y,z)  dS =

R
!! f(r(u,v)) " 1 + gx( )2 + gy( )2

  dA   so we need 

 

f(r(u,v)),  ru and rv .

 

 ru = cos(v), sin(v), 1 ,  rv = –u ! sin(v), u !cos(v), 0  and 

 

 

ruxrv =
   i              j             k
 cos(v)      sin(v)       1
–u ! sin(v)  u !cos(v)   0

= –u !cos(v), – u ! sin(v), u   so  

 

ruxrv = u 2   . 

 

 

f(x,y,z) = z x2 + y2 = v !u  so 

 

 

S
!! f(x,y,z)  dS =

R
!! f(r(u,v)) " ruxrv  dA 

 

=
v=0

2!

"  
u=0

1

" [v #u](u 2) du dv

 

= 2! 2( ) 1
3

2" 
# 

$ 
%  .   

  

Practice 3:  Evaluate 

 

S
!! (1 + y)  dS   on the surface S in Example 3. 

 
Note:  If  z=g(x,y) and f(x,y,z)=1 for all (x,y), then  

 

S
!! f(x,y,z)  dS  is the surface area of S, and this area equals  

 

R
!! 1 + gx( )2 + gx( )2   dA , then same result we saw in Section 14.5 . 
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Oriented Surfaces and the Unit Normal Vector n 
 
Before investigating surface integrals for vector-valued functions, some vocabulary  

and technical issues need to be considered:  oriented surfaces and an orientation for  

vector n that is normal (perpendicular) to the surface. 

 

A flat piece of paper in the xy-plane has a normal vector 

 

n = 0,0,1  pointing upward at 

each point on the paper (Fig. 5).  If we gently fold (but not crease) the paper, then the 

normal vector n will change continuously depending on its location on the paper (Fig. 6).  

If we follow a closed path on the paper that does not cross the paper’s edge then the  

direction of the normal vector will change continuously and will return to the starting 

location pointing in the its original direction (Fig. 7).  Such a surface is called oriented. 

 

 

 

      A smooth surface S is oriented if  

 *  S has a non–zero normal vector at each point,  

 *  the direction of the normal vector varies continuously as we move along S (not crossing an edge),  

 *  and, a normal vector returns to its original orientation when it returns to its  

  original position after moving along any closed path on S (not crossing an edge). 

 

Fortunately, most surfaces are oriented.  The most famous example of a non-

oriented surface is a Mobius strip (Fig. 8).  If we start with a normal vector n at 

any point and travel along the middle of the strip (not crossing an edge), then we  

end up at the starting point again but with the normal vector now pointing in the  

direction –n (Fig. 9).  

 

The results that follow require that our surfaces be oriented. 

 

However, at a point A on an oriented surface there are two normal vectors, and we  

need to select one of them for the orientation.  If the surface encloses a region of space, the 

convention is to pick the normal vector which points outward from the enclosed region (Fig. 

10). 

 
 

 

 



15.8  Surface Integrals Contemporary Calculus 5 
 

Surface Integral for a Vector–Valued Function  

 
Let 

 

!S  be a small patch on the smooth, oriented surface S with oriented 

normal vector n (at some point of  S).  Then the magnitude of the vector F 

crossing the patch is the projection of F onto n.  If we think of the vector 

field as water moving F at each point, then the amount of water passing 

through the patch 

 

!S  in the direction of n is  

 

(F •n)(area of !S) .  
Visually, that volume of that water (per unit of time) is the volume of the 

prism in Fig. 11.  As before, adding the values of  

 

(F •n)(area of !S)  for 

all of the patches we have the Riemann sum  

 

!u,!v
" (F •n)(area of !S) .  

Taking the limit as all of the 

 

!u and 

 

!v approach zero, we have the surface integral  

 

S
!! F "n dS .  If the surface S is 

parameterized by the r(u,v)=(x(u,v), y(u,v), z(u,v) )  for (u,v) in a region R, then  

 

!S = ruxrv " !u " !v .  The vector 

 

ruxrv   is normal to the surface S and the unit normal vector is 

 

n = ruxrv
ruxrv

 so  

 

F •n dS = F •
ruxrv
ruxrv

! ruxrv ! "u ! "v 

and  

 

F •n dS = F • (ruxrv) dA . 

 

 

 Definition:  Surface Integral of F over S 
 

  If       F is a continuous vector field over the oriented surface S parameterized by r(u,v)  

   and having unit normal vector n, 

  then   the surface integral of F over S is 

 

S
!! F "n dS  

 

=
R
!! F • (ruxrv)  dA  . 

  This integral is also called the flux of F across S. 

 
 
Example 4: Suppose S is the part of the plane 3x+2y+6z=30 with domain 

0≤x≤4 and 0≤y≤6 (Fig. 12).  This surface can be parameterized 

by 

 

r(u,v) = u, v, 5 – u
2

– v
3

 so 

 

ru = 1, 0, – 1
2

, 

 

rv = 0, 1, – 1
3

and.  If 

 

F(x,y,z) = 0, 0, – 2  then 

 

 

S
!! F "n dS =

R
!! F • (ruxrv)  dA

 

=
R
!! 0, 0, – 2 •

1
2

, 1
3

, 1  dA

 

=
u=0

4

!  
v=0

6

! – 2  dv du 

  

 

= (–2)(area of R) = (–2)(24)  . 
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 If  

 

F = 0, 0, – 2   is the velocity of water in m/s, and x and y are given in meters (m), then the units of  

 

S
!! F "n dS  are  

 

m3/s :  48 

 

m3/s  pass through the surface S.  The negative sign in the answer results 

because the angle between 

 

F  and 

 

n  is greater than 

 

90o  .  If we had picked the opposite normal vector, 

then the answer would have been +48. 
 

Practice 4:  Use the surface S from Example 3 and calculate 

 

S
!! F "n dS   for  

 

F = 0, – 3, 0  and  for 

 

F = 1, 2, 3  . 

 

If F is not a constant vector field as in the previous Example and Practice problems, then we need to rewrite F(x,y,z) 

as F( x(u,v), y(u,v), z(u,v) ). 

 

Practice 5:  Suppose S is the part of the surface  z=f(x,y) above the region R in the xy-plane and that 

 

F = M, N, P  .  

Show that  

 

S
!! F "n dS =

R
!! F • (ruxrv) dA =

R
!! –M " fx – N " fy + P{ } dA  . 

 

When S is a sphere 
 

Spheres occur often in applications so it is worthwhile to see the calculations for a sphere.  A sphere of radius R 

centered at the origin is easily described in spherical coordinates as 

 

R, !,  "( )   with 

 

0 ! " ! 2#  and 

 

0 ! " ! #  .  Setting 

 

u = !  and 

 

v = !  and then converting to rectangular coordinates we have  (as in 15.7 Example 1) 

 

x(u,v) = R ! sin(v) !cos(u) , 

 

y(u,v) = R ! sin(v) ! sin(u) and 

 

z(u,v) = R !cos(v) . Since 

 

r(u,v) = x, y, z , 

 

ru = –R ! sin(v) ! sin(u), R ! sin(v) !cos(u), 0  and 

 

rv = R !cos(v) !cos(u), R !cos(v) ! sin(u), – R ! sin(v)  . 

Finally, 

 

ruxrv = –R2 sin2(v) !cos(u), sin2(v) ! sin(u), sin(v) !cos(v)  .  For an outward facing normal vector n, 

take  

 

ruxrv = R2 sin2(v) !cos(u), sin2(v) ! sin(u), sin(v) !cos(v)  . 

 

Example 5:  Suppose S is a sphere of radius 1 centered at the origin and 

 

F(x,y,z) = x,y,z  is a radial vector field. 

 (a)   Determine the flux of F across S.  (b)  Determine the flux of F across S when S has radius R. 
 

Solution:  (a)  

 

F(x,y,z) = x,y,z = sin(v) !cos(u), sin(v) ! sin(u), cos(v)  .  Then 

 

 

S
!! F "n dS

 

=
R
!! F • (ruxrv)  dA

 

=
R
!! sin(v) "cos(u), sin(v) " sin(u), cos(v) • sin2(v) "cos(u), sin2(v) " sin(u), sin(v) "cos(v)  dA  

 

 

=
R
!! sin3(u) "cos2(v) + sin3(v) " sin2(u) + sin(v) "cos2(v) dA

 

=
u=0

2!

"  
v=0

!

" sin(v) dv du

 

= 4!  . 



15.8  Surface Integrals Contemporary Calculus 7 
 

 (b)   The only change in the calculation from part (a) is that now  

 

ruxrv  has the factor  

 

R2 so the  

  result from part (a) needs to be multiplied by 

 

R2 :  flux = 

 

4!R2 . 

 

Practice 6:   Suppose S is the hemisphere 

 

S = {(x,y,z) :  x2 + y2 + z2 = 1 and 0 ! z}  and  

 

F(x,y,z) = z,x,y  .   

 Determine the flux of F across S. 

 
Connections with line integrals 
 
There are nice parallels between the integrals of scalar and vector-valued functions along a curves C in  2D (section 

15.3) and those on surfaces S in 3D. 
 

 scalar f  on a curve C parameterized  by r(t):    

 

C
! f ds =

t=a

b

! f(r(t)) " r'(t)  dt  

 scalar f  on a surface S parameterized by r(u,v): 

 

S
!! f(x,y,z)  dS =

R
!! f(r(u,v)) " ruxrv  dA  

 

 vector–valued  F on a curve C parameterized by r(t):    

 

C
! F •T  ds =

t=a

b

! F(r(t)) • r '(t) dt  

 vector–valued  F on a surface S parameterized by r(u,v):    

 

S
!! F "n dS =

R
!! F • (ruxrv)  dA 

Problems 
 
1. f(x,y,z)=x+y+z and  

 

r(u,v) = u + 3v, 2u – v, 3u + v  .  What is the value of  

 

f(r(u,v)) ! ruxrv  "A   when  u=1, 
v=2, 

 

!u = 0.3 and 

 

!v = 0.1 ? 
 
2. f(x,y,z)=x+y+z and  

 

r(u,v) = 2u + v, 3u – v, u + 2v  .  What is the value of  

 

f(r(u,v)) ! ruxrv  "A   when  u=2, 
v=3, 

 

!u = 0.1 and 

 

!v = 0.2 ? 
 
3. 

 

f(x,y,z) = 2x +y2 – z  and 

 

r(u,v) = u2, 3u + v, v2  .  What is the value of  

 

f(r(u,v)) ! ruxrv  "A   when  u=2, v=1, 

 

!u = 0.3 and 

 

!v = 0.2 ? 
 
4. 

 

f(x,y,z) = 2x +y2 – z  and 

 

r(u,v) = u2, 3u + v, v2  .  What is the value of  

 

f(r(u,v)) ! ruxrv  "A   when  u=3, v=2, 

 

!u = 0.3 and 

 

!v = 0.2 ? 
 
5. 

 

f(x,y,z) = x2 + 4y + z   on the surface 

 

S = {(x,y,z) :  0 ! x ! 3, 0 ! y ! 2, z = 4) .  Evaluate 

 

S
!! f(x,y,z) dS . 

 
6. 

 

f(x,y,z) = x2 + 4y + z   on the surface 

 

S = {(x,y,z) :  0 ! x ! 2, y = 3, 1! z ! 4) .  Evaluate 

 

S
!! f(x,y,z) dS . 

 
7. 

 

f(x,y,z) = y2  on the surface 

 

S = {(x,y,z) :  x + y +z = 4 in first octant}  Evaluate 

 

S
!! f(x,y,z) dS . 
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8. 

 

f(x,y,z) = xy  on the surface 

 

S = {(x,y,z) :  z =1+ x2 + y2, 0 ! x ! 2, 0 ! y ! 2} . Evaluate 

 

S
!! f(x,y,z) dS . 

 

9. 

 

F(x,y,z) = x, 2y, 3z   on the surface  

 

S = {(x,y,z) :  0 ! x ! 3, 0 ! y ! 2, z = 4) .  Determine the flux of F across S.  

If the units of F are liters/second and the units of x, y and z are meters, what are the units of the flux? 
 

10. 

 

F(x,y,z) = x, – y, z   on the surface  

 

S = {(x,y,z) :  z = x2 + y2, 0 ! x ! 2, 0 ! y ! 2}  Determine the flux of F 

across S. If the units of F are grams/meter2 and the units of x, y and z are meters, what are the units of the flux? 

 
11. 

 

F(x,y,z) = x, y, z   on the elliptical cylinder  

 

S = {(x,y,z) :  x2 + 4y2 = 4,  0 ! z ! 3}  Determine the flux of F 
across S.   

 
12. 

 

F(x,y,z) = 0, 0, K   on the paraboloid  

 

S = {(x,y,z) :  x2 + y2 ! A2,  z = A2 – x2 – y2}  Determine the flux of F 

across S. 
 

13. Suppose  F is the same as in Problem 12 but now S is the “stretched” paraboloid 

 

S = {(x,y,z) :  x2 + y2 ! A2,  z = C(A2 – x2 – y2)}. Determine the flux of F across S. 

 
 
 
Practice Answers 
Practice 1:  From Example 1, 

 

ruxrv = u 2  and  x = u !cos(v)   so 

 

 

S
!! (2 + x)  dS =

v=0

2"

!  
u=0

2

! [2 + u #cos(v)]# (u 2) du dv  

 

=
v=0

2!

"  u2 2 +
1
3

u3 2 #cos(v)$ 
% 

& 
'   |

u=0

2
 dv 

 

= 8 2!  . 

 

Practice 2: S can be parameterized by 

 

r(u,v) = 3 !cos(u), 3 ! sin(u), v  with 

 

0 ! u ! 2"  and 

 

0 ! v ! 2  .  Then 

 

ru = –3 ! sin(u), 3 !cos(u), 0 , 

 

rv = 0, 0, 1 , 

 

ruxrv = 3cos(u), 3sin(u), 0   and 

 

| ruxrv |= 3  .   

 

 

f(r(u,v)) = 3 !cos(u)  so 

 

S
!! f(x,y,z)  dS =

0

2"

!
0

2

! 3 #cos(u) # 3 dv du  

 

=
0

2!

" 18 #cos(u)  dv = 0  . 

 
Practice 3:  From Example 2, 

 

ruxrv = u 2  and  1 + y =1 +u ! sin(v)  so 

 

 

S
!! (1 + y)  dS =

v=0

2"

!  
u=0

1

! [1 + u # sin(v)]# (u 2) du dv  

 

=
v=0

2!

"  
1
2

u2 2 –
1
3

u3 2 #cos(v)$ 
% 

& 
'   |

u=0

1
 dv 

 

= 2!  . 

 
 

Practice 4:  For  

 

F = 0, – 3, 0  , 

 

S
!! F "n dS =

R
!! 0, – 3, 0 •

1
2

, 1
3

, 1  dA

 

=
R
!! 1 dA = 24 . 

 For  

 

F = 1, 2, 3  , 

 

S
!! F "n dS =

R
!! 1, 2, 3 •

1
2

, 1
3

, 1  dA

 

=
R
!!

25
6

" 
# 

$ 
%  dA =100 . 
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Practice 5:  The surface S can be parameterized by   

 

r(u,v) = u, v, f(u,v) .   

 Then 

 

ru = 1, 0, fu ,  rv = 0, 1, fv    and  

 

ruxrv = –fu, – fv, 1  so  

 

 

S
!! F "n dS =

R
!! F • (ruxrv)  dA

 

=
R
!! M, N, P • –fu, – fv, 1  dA

 

=
R
!! –P " fx – Q " fy + P{ } dA . 

Practice 6:   As in the example, S can be parameterized by 

 

x(u,v) = sin(v) !cos(u)  , 

 

y(u,v) = sin(v) ! sin(u)  and  

 

z(u,v) = cos(v)  with 

 

0 ! u ! 2"   and 

 

0 ! v ! " /2  .  Then  

 

F(x,y,z) = cos(v), sin(v) !cos(u), sin(v) ! sin(u)   

and   

 

 

S
!! F "n dS

 

=
R
!! F • (ruxrv)  dA  

 

 

=
R
!! cos(v), sin(v) "cos(u), sin(v) " sin(u) • sin2(v) "cos(u), sin2(v) " sin(u), sin(v) "cos(v)  dA  

 

 

=
v=0

!/2

"  
u=0

2!

"  cos(v) # sin2(v) #cos(u) +sin3(v) #cos(u) # sin(u) +sin2(v) # sin(u) #cos(v) du dv. 

 But  

 

u=0

2!

" (each term) du = 0  so the flux =0. 

 

 

 


