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Stokes’ Theorem    

 

The circulation–curl form of Green’s Theorem (section 15.5) says if  

  

F = M,  N  is a 2D vector field and C is a simple, closed, piecewise smooth 

curve enclosing a region R then the integral of the curl of F on R is equal to 

the circulation of F around C (with a positive orientation):  (Fig. 1) 

  

R
!! curl  F  dA =

R
!! "N

"x
#
"M
"y

$ 
% & 

' 
( )  dA =

C
! F • T ds = circulation of F around C .  

 

Stokes’ Theorem moves this result into 3D, and it has some very important 

consequences.  If we think of Green’s Theorem as applying to a flat soap film 

then we can think of Stokes’ Theorem as giving the same result if we blow gently 

to create a soap bubble, a surface S in 3D.  (Fig. 2) 

 

 

  Stokes’ Theorem 

 If        S is a connected, simply–connected, piecewise-smooth surface in 3D with  

            piecewise–smooth boundary curve C, and F has continuous partial derivatives, 

 then   

 

Among the consequences of Stokes’ Theorem: 

*  It allows us to trade 2D and 3D integrals – sometimes one of those is much easier than the other. 

*  It says that the integral of the curl of a vector field only depends on its values on the boundary. 

*  It says that the integral of the curl over a closed surface (like a sphere) is 0 since a closed surface  

 has no boundary curve. 

*  It allows us to prove some of Maxwell’s equations from physics (section 15.11). 

 

The general proof of Stokes’ Theorem is complicated.  A proof of an easy 

special case is given next, and a proof for the common special case when 

the surface S has the form in Fig. 3 with 

  

S = {(x, y,z) :  z = z(x,y) is a func tion of x a nd y}  is given in the 

Appendix. 
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Proof for an easy special case: S consists of a finite number of flat panels (Fig. 4) not necessarily in the 

same plane. 

Then we can apply Green’s Theorem to each panel and add the results together.   

This is very similar to the “finite Green’s Theorem” we saw in section 15.5.  The 

circulations along all of the interior edges cancel since adjacent panels  

have equal circulations going in opposite directions, and the only circulations 

remaining are those along the boundary of the region S.  If S is the union of  

sub-regions  

  

S1,  S2,  S3 ... Sn ,  then 

  

S
!! curl  F • dS =

i=1

n

"
Si
!! curl  F • dS

  

=
i=1

n

!
Ci
" F • T dt =

C
" F • T dt  . 

 

Example 1:  Use Stokes’ theorem to evaluate 

  

S
!! curl  F • dS   where S is the 

hemisphere bounded by 

  

x2 + y2 + z2 = 9  with z≥0 (Fig. 5) for the  

 vector field  

  

F = y,  – x,  0 . 

 

Solution:  By Stokes’ theorem  

  

S
!! curl  F • dS =

C
! F • dr  where C is the bounding 

circle parameterized by  

  

r(t) = 3 !cos(t),  3 ! sin(t),  0  .  Then 

 

  

C
! F • dr =

C
! F • T dt =

t =0

2"

! 3# sin(t),  – 3 #cos(t),  0 • –3 # sin(t),  3 #cos(t),  0  dt  

  

  

=
t =0

2!

" – 9 # sin 2(t) – 9 #cos2(t) dt =
t= 0

2!

" – 9 dt = (–9)(2! ) = –18! . 

 It is also possible to evaluate 

  

S
!! curl  F • dS  directly, but more difficult.  

 In this case the line integral around C was easier to evaluate than the surface integral on S. 
 

Practice 1: Use Stokes’ theorem to evaluate 

  

S
!! curl  F • dS =

C
! F • dr    where S is the 

paraboloid bounded by 

  

2x2 + 2y2 + z = 18  with z≥0  (Fig. 6) for the vector  

 field  

  

F = y,  – x . 

 

Example 2:  (a)  Evaluate the line integral  

  

C
! F • dr  where 

  

F = z,  – z,  x2 – y2   and C 

consists of the 3 line segments that bound the plane z=8–4x–2y in the first 

octant oriented as in Fig. 7. 
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 (b)  Evaluate  

  

C
! F • dr  for the line segment from (2, 0, 0) to (0, 4, 0). 

 

Solution: (a)  Rather than parameterizing the 3 line segments and evaluating the line integral along each 

of them, we can use Stoke’s theorem and instead evaluate . 

The equation of the triangle is  4x + 2y + z = 8 so  z = 8 – 4x – 2y  and   

     Then 

    

  

=
S
!! 1– 2y,  1– 2x,  0 • 4,  2,  1  dS  

 

  

=
x =0

2

!  
y =0

4–2x

! 6 – 8y – 4x dy dx  = (a standard double integral) 

  

=  –120 . 

 (b)  C is parameterized by 

  

r(t) = 2 – t/2,  t,  0  for 0≤t≤4 so 

  

r '(t) = –1/2,  1,  0 . 

  

  

C
! F • dr =

t =0

4

! F • r ' dt

  

=
t =0

4

! 0,  0,  2 - t/2( )2 – t 2 • –1/2, 1,  0  dt =

  

t =0

4

! 0  dt = 0  . 

 

Practice 2:  Calculate the circulation of 

  

F = xy,  xz, – 2yz  around the  

 curve C that consists of the 3 line segments that bound the plane 

x+2y+2z=4 in the first octant oriented as in Fig. 8. 
 

Example 3: Use Stokes’ theorem to evaluate 

  

S
!! curl  F • dS   where S is the 

“cap” on the hemisphere bounded by 

  

x2 + y2 + z2 = 25  with 

z≥3  (Fig. 9) for the vector field  

  

F = z – y, x,  – x . 

 

Solution:  

  

S
!! curl  F • dS =

C
! F • dr  where  C is the circle   

 

r(t) = 4 !cos(t), 4 ! sin(t), 3 .  

Then

 

t
! F • r '  dr =

t=0

2"

! 3 – 4 # sin(t), 4 #cos(t), – 4 #cos(t) • –4 # sin(t), 4 #cos(t), 0  dr  

   

 

=
t=0

2!

" –12 # sin(t) + 16 # sin2(t) +16cos2(t) dt

 

=12cos(t) +16t |
0

2!
= 32!   . 
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Practice 3:  Use Stokes’ theorem to evaluate 

 

S
!! curl F • dS   where F is the same as in Example 3, but 

now S is the cap with z≥4 on the same hemisphere. 
 

Example 4:  Evaluate 

 

S
!! curl F • dS when S is the surface of the unit cube 0≤x≤1, 0≤y≤1, 0≤z≤1. 

 

Solution: Since S is a piecewise closed smooth surface, then S has no boundary curve C and 

 

 

S
!! curl F • dS = 0  . 

 

Practice 4:  Evaluate 

 

S
!! curl F • dS when S is the ellipsoid 

 

x2 + 2y2 + 4z2 = 16 . 

 

If S has holes 
 

If the surface S has a hole (Fig. 10) then the boundary of S has an additional 

boundary curve, and we can treat that new boundary in the same way we 

treated the boundary of a hole using Green’s Theorem. We can create 

 a single boundary for S by adding a path along S to the hole and then back 

from the hole (Fig. 11).  Then the integral along this total new path will be  

the sum of the counterclockwise integrals around the outer boundary of S  

minus the sum of the counterclockwise integral around the hole.  The integrals 

along the added paths sum to 0 since they are traveled once in each direction.  

Remember, for a counterclockwise orientation the region is always on our left 

hand side. 

 

Example 5:  Evaluate 

  

S
!! curl  F • dS for 

  

F = xy,  x +z2, y 3   with 

  

S = {(x, y,z) :  x2 + y2 + z2 = 25,  0 ! z ! 4} 

Solution: This is the situation in Fig. 11. 

  

C1 is parameterized by 

  

r1(t) = 5 !cos(t),  5 ! sin(t),  0  and 

  

C2  by 

  

r2(t) = 3 !cos(t),  3 ! sin(t),  4  for 

  

0 ! t ! 2"  (both are counterclockwise). 

 

  

C1
! F • dr 

  

=
0

2!

" 25 # sin(t) #cos(t),  5 # cos(t) + 0,  125 # sin 3(t) • –5s in(t),  5cos(t), 0  dt  

   

  

=
0

2!

" –125 # sin 2(t) #cos(t) + 25 # cos2 (t) +0 dt = 25! .  
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C2

! F • dr =
0

2"

! 9 # sin(t) #cos(t), 3 #cos(t) + 4, 27 # sin3(t) • –3 # sin(t), 3 #cos(t), 0  dt  

   

 

=
0

2!

" – 27 # sin2(t) #cos(t) +9 #cos2(t) +12 #cos(t) +0 dt = 9! . 

 So  

 

S
!! curl F • dS =

C1

! F • dr –
C2

! F • dr =16" . 

 

Practice 5:  Evaluate 

 

S
!! curl F • dS for 

 

F = xy, x +z2, y3   with 

 

S = {(x,y,z) :  x2 + y2 + z2 = 25, 0 ! z ! 3}.  

 

 
Meaning of the curl 
 
In section 15.6 we claimed that the curl vector had two important properties: 

* the magnitude of the curl gives the rate of the fluid’s rotation, and 

* the direction of the curl is normal to the plane of greatest circulation and 

points in the direction so that the circulation at the point has a  

 right hand orientation (Fig. 12).   
 

If we have a small paddle wheel at point P and tilt it in different directions, then  

the claims say that the wheel will spin fastest with a right-hand orientation when 

the axis points in the direction of the curl vector. 
 

Now we can use Stokes’ Theorem to justify those claims. 
 

Let P be a point in the vector field F, and let u be any unit vector.  Suppose S is a small disk that has center 

at point P and radius r and that lies in the plane determined by P and u .  S has a boundary circle C oriented 

positively so that S is always on the left side as we move along C. 
 

Since S is small, the value of 

 

!xF  is almost constant on S and so 

 

 

S
!! ("xF) •u dS 

 

! ("xF) •u#
S
$$ 1 dS 

 

= (!xF) •u" (area of S) 

 

=|!xF | "cos(#) " ($ " r2) 

But by Stokes’ Theorem, 

 

S
!! ("xF) •u dS =

C
! F •T dt = circulation of F around C   so 

 

|!xF | "cos(#) =
circulation of F around C

$ " r2
 which is maximum when 

 

! = 0  and u  has the same direction as 

 

!xF .   
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 Together these statements say that an axis in the direction of  

 

!xF  gives the maximum circulation, 
and the magnitude of  

 

!xF  is the maximum rate of circulation per unit of area.  

 

In section 15.6 we also stated the following theorem and said that a proof needed to wait until we had 

Stokes’ Theorem. 
 

 

 Theorem:   If      F is defined and has continuous partial derivatives at every point in 3D  

            and curl F = 0, 

   then   F  is a conservative field. 

 

Proof:  With Stokes’ Theorem this is easy.  If  

 

curl F = 0  then 

 

0 =
S
!! curl F dS for every simply-connected 

region S so by Stokes’ Theorem  

 

C
! F •T  ds =

S
!! curl F dS = 0 for every simple, closed, piece-wise 

smooth curve C.  That means that F is path independent and conservative. 

 

 

 

Problems     
 

For problems 1 to 12 use Stoke’s Theorem to find the circulation of vector field  F around the positively 

oriented curve . 

 

1. 

 

F = y, 2x, – z2   and C is the ellipse 

 

x2 + 4y2 = 4 . 

 

2. 

 

F = y, 2x, – z2   and C is the circle 

 

x2 + y2 = 9. 

 

3. 

 

F = z, y2, xy  and C is the boundary of the triangle 2x+2y+2z=6 in the first octant. 

 

4.  and C is the boundary of a simple closed curve in the yz=plane. 

 

5. 

 

F = z – y, x – z, x – y  and C is the boundary of a simple closed curve in the x+y+z=5 plane. 

 
6. 

 

F = x + y2, 3x, 2z   and C is the boundary of the rectangle 

 

R = {(x,y,z) :  0 ! x ! 3, 1! y ! 3, z = 0}   

oriented in the counterclockwise direction. 
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7. 

 

F = y2, 3x +z, 2z + y   and C is the boundary of the circle 

 

R = {(x,y,z) :  x2 + y2 ! 4, z = 0}  oriented in 

the counterclockwise direction. 
 

8. 

 

F = –y2, x +z, z2 + y  and C is the boundary of the circle 

 

R = {(x,y,z) :  x2 + y2 ! 9, z = 2}   oriented in the 

counterclockwise direction. 
 
9. 

 

F = y, – x, z  and  

 

S = {(x,y,z) :  x2 + y2 + z2 =16, 0 ! z} is a hemisphere. 
 
10. 

 

F = y, – x, z  and  

 

S = {(x,y,z) :  x2 + y2 + z2 =16, 0 ! y}  is a hemisphere. 
 
11. 

 

F = sin(x), cos(y), sin(z)  and S is the solid tour with large radius 3 and small radius 1. 
 
12. 

 

F = xy, x2 +z2, y3  and S is the solid cube with vertices  

 

x = ±1, y = ±1, z = ±1. 
 
In problems 13 to 18 use Stokes’ Theorem to determine which of these fields are conservative. 
 
13. 

 

F = yz, xz, xy  
 
14. 

 

F = yz +a, xz +b, xy +c    a, b and c are constants. 
 
15. 

 

F = yza, xzb, xyc    a, b and c are constants. 
  
16. 

 

F = y +z, x +z, x + y  
 
17. 

 

F = x +z, y +z, x + y  
 
18. 

 

F = yz, x – y, – x  
 
For problems 19 to 26 evaluate 

 

S
!! curl F • dS for the given field F and surface S. 

19. 

 

F = z – y, x – z, y – x  and  

 

S = {(x,y,z) :  x2 + y2 = 16, 0 ! z ! 3}  is a cylinder.  
 
 
20. 

 

F = y, – x, z  and  

 

S = {(x,y,z) :  x2 +z2 = 9, 1! y ! 5} is a cylinder. 
 

21. 

 

F = x, y2, z3   and  

 

S = {(x,y,z) :  x2 + y2 +z2 = 25, – 3 ! y} . 

 
22.  

 

F = sin(x), cos(y), sin(z)   and  

 

S = {(x,y,z) :  x2 + +y2 +z2 = 25, – 3 ! z ! 4} . 
 

23. 

 

F = –y, z, x    and  

 

S = {(x,y,z) :  
x2

4
+

y2

9
+

z2

25
= 1, 0 ! y}  a truncated ellipsoid. 

 

24. 

 

F = –y, z, x   and  

 

S = {(x,y,z) :  
x2

4
+

y2

9
+

z2

25
=1, 0 ! z} a truncated ellipsoid. 
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25.  

  

F = y,  z,  x   and  

  

S = {(x, y,z) :  x2 + y2 + z = 25,  0 ! z ! 16} a truncated paraboloid. 
 

26. 

  

F = y,  z,  x    and  

  

S = {(x, y,z) :  x2 + y2 + z = 25,  0 ! z ! 9} . 

 
 

 

Practice Answers 
Practice 1:  The field F and the boundary C (a circle in the xy-plane with radius 3) are the same as in 

Example 1 so  

  

S
!! curl  F • dS =

C
! F • dr = –18"   just as in Example 1. 

 

Practice 2:  By Stokes’ theorem   and the second integral is easier to evaluate 

then doing 3 line integrals..  On the triangle  

  

z = 2 –
x
2
– y  so   

 

   .  

 But  x+2y+2z=4  so   

 Then  

  

=
S
!! –4 + 2y,  0, 2 –

3
2
x – y •

1
2

,  1,  1  dS 

  

=
x =0

4

!  
y=0

2– x / 2

! –
3
2

x dy dx  

  

  

= –
3
2
x= 0

4

! – 2x +
1
2
x2  dx = –

3
2

"  
#  

$  
%  –

16
3

" 
# 

$  
%  = 8 . 

 

 

Practice 3:  Now  

  

r(t) = 3 !cos(t),  3 ! sin(t),  4   so 

  

r '(t) = –3 ! sin(t),  3 ! cos(t),  0   and 

 

  

t
! F • r '  dr =

t =0

2"

! 4 – 3 # sin(t),  4 #cos(t),  – 3 #cos(t) • –3 # sin(t),  3 #cos(t),  0  dr  

   

  

=
t =0

2!

" –12 # sin(t) + 9 # sin 2(t) +9cos2(t) dt

  

=
t =0

2!

" –12 # sin(t) + 9 dt =18! . 
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Practice 4:  S is a smooth closed surface  so  

 

S
!! curl F • dS = 0  . 

 

 

Practice 5:   

 

C1 and 

 

r1 are the same as in Example 5 but now 

 

C2  is parameterized by 

 

r2(t) = 4 !cos(t), 4 ! sin(t), 3  for 

 

0 ! t ! 2"  (counterclockwise). 

 

 

C2

! F • dr =
0

2"

! 16 # sin(t) #cos(t), 4 #cos(t) + 3, 27 # sin3(t) • –4 # sin(t), 4 #cos(t), 0  dt  

 

 

=
0

2!

" – 64 # sin2(t) #cos(t) +16 #cos2(t) +12 #cos(t) +0 dt =16! . 

 Then 

 

S
!! curl F • dS =

C1

! F • dr –
C2

! F • dr = 25" –16" = 9" . 
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Appendix:  Proof of Stokes’ Theorem for a common special case 
 
Stoke’s Theorem:   

 

S
!! curl F • dS =

S
!! ("xF) • n  dS =

C
! F • dr =

C
! F • T dt = circulation around C  

 

Common special case:  S is a surface of the form  (x, y, z(x,y) )  (Fig. A1) 

This requires a lot of calculations and very careful attention to details.  Let 

 

F = P, Q, R   and  

 

S = {(x,y,z) :  z = z(x,y) is a function of x and y}.   

We will evaluate 

 

C
! F • dr   and  

 

S
!! ("xF) •n  dS   separately and show  

that they are equal. 

 

 

 

S
!! ("xF) •n  dS  :  Thinking of S as a parameterized surface (but using x and y instead of u and v) for x 

and y in the xy-region R (Fig. A2), then  

 

S
!! ("xF) •n  dS =

R
!! ("xF) • (rxxry)  dA . 

 

rx = 1, 0, zx , 

 

ry = 0, 1, zy  and  

 

rxxry = –zy, – zy, 1  .  Then   

 

S
!! ("xF) •n  dS =

R
!! Ry – Qz, Pz – Rx, Qx – Py • –zy, – zy, 1  dA . 

 

 

C
! F • dr  :  This one is more complicated and requires the Chain Rule for functions of several variables. 

 

C
! F • dr =

C
! F • r' dt

 

=
C
! P, Q, R • dx, dy, dz  dt

 

=
C
! P "dx +  Q "dy +  R "dz .   

 

But  z=z(x,y)  so  (Fig. A2) 

 

dz = zx !dx + zy !dy, and  

 

C
! F • dr =

C
! (P + R "zx )dx +  (Q +R "zy) "dy

 

=
C
! M dx +  N dy . 

By Green’s Theorem  

 

C
! M dx +  N dy =

R
!! Nx – My dA  with 

 

M = P + R !zx    and  

 

N = Q +R !zy  .  

 

 

My =
!
!y
(P + R "zx ) = Py + Pz "zy + zx "Ry + R "

!
!y
zx  

 

 

= Py + Pz !zy + R !zxy + zx ! (Ry + Rz !zy)  . 

 



15.9  Stokes’ Theorem Contemporary Calculus 11 
 

Similarly, 

 

Nx =
!
!x
(Q +R "zy) = Qx +Qz "zx + R "zxy + zy " (Rx + Rz "zx ) . 

 

Then, after substituting and simplifying, 

 

C
! F • dr =

R
!! Nx – My dA

 

=
R
!! zx (Qz – Ry) + zy(Rx – Pz)  +  (Qx – Py)  dA

 

 

=
R
!! Ry – Qz, Pz – Rx, Qx – Py • –zy, – zy, 1  dA

 

=
S
!! ("xF) •n  dS 

so Stokes’ Theorem is also true for surfaces of the form  

 

S = (x,y,z) :   z = z(x,y){ } . 

 

 

Suppose we cut a hole in the surface S and attach a smooth “bump” 

to cover the hole (Fig. A4).  Is Stokes’ Theorem still true for this 

new surface consisting of the old S minus the hole plus the bump?  

You should be able to justify your answer. 

 

 
 

 

 

 

 
 
 


