- 1. Quickies just write the answer. A, B and C are constants. (1 point each)
- (a) $D(\sin(5-3x)) =$ _____
- (b) $D(\ln(x^3+2)) =$ _____
- (c) $D(\sec(x^2)) =$ (d) $D(\sqrt{7 + x^4}) =$
- 2. Calculate the following derivatives. Circle each answer. (Do NOT simplify your answers.)

(3 points each)

(a)
$$D((x^2 + \cos(x))^3) =$$

(b)
$$\frac{d}{dx} \left(e^{3x} \cdot \ln(7x) \right) =$$

(c)
$$\frac{d}{dt} \left(\sin\left(\frac{2}{x}\right) + \tan(Ax) \right) =$$

(d)
$$\frac{d}{dt} \left(\ln(x^3 + \sin(5x)) \right) =$$

3.
$$f(1) = 3$$
 and $f'(1) = 2$. Then at $x=1$ $D(f^3(x)) = _____$ and $D(f(x^3)) = ______$

(4)

4. T(x) is the temperature (${}^{o}F$) at a depth of x meters. Explain in a clear complete sentence the meaning of "T" (2000) = 0.03" so someone who did not know calculus could understand.