Math 151

Show Your Work!

Good Luck!
Nov. 6, 2018 Quiz \#5 A

Name \qquad

1. Use Logarithmic Differentiation to calculate $\mathrm{dy} / \mathrm{dx}$ for $y=\frac{(3 x-2)^{4}(5 x+7)^{3}}{(2 x+8)^{6}}$. (circle your answer) $\frac{d y}{d x}=$
(6)
2. $f^{\prime}(x)=(x-4)^{2}(x-6)$ for $1 \leq x \leq 7$.
(4) (a) What are the Critical Numbers of f on this interval? $x=$
(1) (b) At $\mathrm{x}=3$ the function f is Increasing Decreasing Not enough information (circle one)
3. True or False (Write the entire word)
(1) (a) \qquad If f is differentiable on the interval [1.7] and $f(3)=0$ then $f(3)$ is a local max or min.
(1) (b) \qquad If $g(2)$ is a global minimum of g then $g '(2)=0$.
4. If $f(x)$ is a cubic polynomial (degree $=3$) on the interval $0 \leq x \leq 8$
(2) then f has at most \qquad critical numbers on [0.8].
5. $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-4 x+5$ on the interval $1 \leq \mathrm{x} \leq 4$. Then according to the Mean Value Theorem
(2) (2) there is a value c so that $f^{\prime}(c)=$ \qquad . For this function and interval $\mathrm{c}=$ \qquad .
6. The graph of $y=f(x)$ is shown for $1 \leq x \leq 6$. Plot and label the -------> location(s) of the c value(s) from the Mean Value Theorem.
(2)

