Show Your Work!
Good Luck!

Name \qquad

1. Use Fig. 1 to answer the following limit questions. (2 each)
(a) $\lim _{x \rightarrow 5} f(x)=$ \qquad
(b) $\lim _{x \rightarrow 1^{+}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow 1^{+}} f(7-x)=$ \qquad
(d) $\lim _{x \rightarrow 1} \operatorname{INT}(2 x+1)=$ \qquad
(e) $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=$ \qquad

Fig. 1
2. Using the methods of this class calculate the following limits. (Show your work. No work $=$ no points.)
(3) (a) $\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x^{2}+x-6}=$
(as an exact fraction)
(3) (b) $\lim _{x \rightarrow 2} \frac{1-|x-5|}{x^{2}-x}=$ \qquad
(as an exact fraction)
(3) (c) $\lim _{x \rightarrow 4^{-}} \frac{\operatorname{INT}(2+x)}{x+3}=$
(3) (d) $\lim _{x \rightarrow 0}\left\{4+\frac{\sin (3 x)}{2 x}\right\}=$ \qquad (to 2 decimal places)
3. Write the equation of the tangent line to the graph of $f(x)=x^{3}+\frac{8}{x}-3 x$ when $\mathrm{x}=2$ (show work!)

$$
y=\ldots
$$

(4)
4. See Fig. 2. B is fixed. As A moves along the curve towards B, the slope of the AB line: (circle one)
(2) INCREASES or DECREASES or STAYS CONSTANT
5. $F(w)$ is the number of flu cases in Washington on week w of flu season.

Translate the following into information that someone who does not know calculus can

Fig. 2
Fig. 2 understand. Use complete sentences. " $F(4)=87$ and F ' $(4)=5$ "
(4)
6. Fig. 7 shows the upward velocity of a toy airplane during a period of several minutes.
(2) (a) From $t=2$ to $t=3$ minutes, the airplane was RISING FALLING (circle one)
(2) (b) At what time was the airplane highest?

$$
t=
$$

7. $g(x)=\left\{\begin{array}{cc}A+x^{3} & \text { if } x<1 \\ 5 x+2 & \text { if } 1 \leq x<4 \\ B-2 x & \text { if } x \geq 4\end{array}\right\}$
(a) Find A so g is continuous at $\mathrm{x}=1 . \mathrm{A}=$ \qquad
(b) Find B so g is continuous at $\mathrm{x}=4$. $\mathrm{B}=$
(2)(2)
8. (a) Carefully define the derivative

$$
f^{\prime}(x)=\frac{d f(x)}{d x}=
$$

(3)
(b) Give one example of what $f^{\prime}(3)$ measures?
(2)
(c) If the units of x are dollars and the units of f are meters, then the units of $\frac{d \mathrm{f}(\mathrm{x})}{d \mathrm{x}}$ are
(2)
9. Fig. 4 shows the graph of $y=f(x)$. On the lower part
sketch the graph of $y=\{$ slope of $f(x)\}=f^{\prime}(x)$.
(4)
10. True or False (write the entire word)

Fig. 4
(1) \qquad If $\lim _{x \rightarrow 3} f(x)=4$ then $\mathrm{f}(3)=4$
(1) \qquad If $g(x)$ is continuous at $x=2$ then $g(x)$ is differentable at $x=2$.
11. Calculate these derivatives using the methods of this class -- show your work. CIRCLE YOUR ANSWER.

You do NOT need to simplify once you have taken all of the derivatives in a problem.
(a) $f(x)=A x^{4}+B x^{3}-C x+\pi$
(b) $g(t)=\frac{4}{t^{3}}+8 \sqrt{t}+2 t^{3}$
$f^{\prime}(x)=$

$$
\frac{d g(t)}{d t}=
$$

(4 points each)
(c) (d) $h(x)=\left(x^{2}+7\right) \cdot \cos (x)$
(d) $g(x)=\left(5 x^{3}+4\right)^{2}$ $D(h(x))=$

$$
g^{\prime}(x)=
$$

(e) $f(x)=3 x^{4}+\frac{2}{x}+6 x \quad D(D(f(x))=$ (This is just the derivative of the derivative.)
(f) $D\left(\frac{x^{3}+7}{x^{2}+\sin (x)}\right)=$
(g) $D(|x-3|)=$
12. The values for f and g and their derivatives are given in the table. Use these values to find these derivatives. Each answer should be a number.

x	0	1	2
$\mathrm{f}(\mathrm{x})$	2	4	2
$\mathrm{f}^{\prime}(\mathrm{x})$	3	-1	5

x	0	1	2
$\mathrm{~g}(\mathrm{x})$	3	0	4
$\mathrm{~g}^{\prime}(\mathrm{x})$	1	-4	2

At $\mathrm{x}=0 \quad D(1+2 f(x)+3 g(x))=$ \qquad
(2 each)

At $\mathrm{x}=1 \quad D(f(x) \cdot g(x))=$ \qquad At $\mathrm{x}=2 \quad D\left(\frac{g(x)}{1+f(x)}\right)=$ \qquad
13. $f(x)=x^{3}+6 x^{2}-36 x+2$. Find all values of x so that $\mathrm{f}^{\prime}(\mathrm{x})=0 . \quad \mathrm{x}=$ \qquad
(4)
14. If f ' (x) is always positive and $\mathrm{f}(3)=0$ then (circle one)
(2) (a) $\mathrm{f}(2)<0$
(b) $\mathrm{f}(2)=0$
(c) $\mathrm{f}(2)>0$
(d) not enough information
15. If $f(x) \geq 0$ for all x values, then (circle one)
(2) (a) $f^{\prime}(x)$ is always positive
(b) f ' (x) is sometimes positive
(c) f ' (x) is never positive
(d) not enough information
16. (a) Draw a function f for $1 \leq x \leq 3$ so $f(2)=3$ and $\lim _{x \rightarrow 2} f(x)=1$
(2 each)

(b) Draw a continuous function f for $1 \leq x \leq 3$ so that $f(2)=2$ and $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=-1$
(c) Draw a continuous function f with $\mathrm{f}^{\prime}(1)<0, \mathrm{f}^{‘}(2)=0$ and $f^{\prime}(3)<0$

Bonus (+1 if correct)
Find a function $\mathrm{f}(\mathrm{x})$ so that $f^{\prime}(x)=12 x^{3}+4 \sin (x)+7 . \quad \mathrm{f}(\mathrm{x})=$ \qquad
The End -- tests back tomorrow (Possible points $=101+1$ bonus point)

