Math 151

Show Your Work!
Good Luck!

Nov. 20, 2018
Test \#3 A

Name \qquad (please print)

1. Show your work. No work $=$ no points.
(a) Use log. differentiation: $y=\frac{(x+2)^{3}}{(x-3)^{6}(x+5)^{4}} \quad$ (circle your answer)

$$
\begin{equation*}
y^{\prime}= \tag{5}
\end{equation*}
$$

(b) Use log. differentiation: $\frac{d}{d x}(5+\sin (x))^{x}=$ (circle your answer)
2. True or False (circle the correct answer)
(2) True False If $g(x)$ is differentiable and increasing for $1 \leq x \leq 6$ then g '(4) >0.
(2) True False If $f(x)$ is differentiable and $f(3)$ is a local maximum for f, then $f{ }^{\text {' }}(3)=0$.
(2) True False If $\mathrm{g}^{\text {' }}(2)$ is undefined then $\mathrm{g}(2)$ is a local max or local min.
(2) True False If $\lim _{\mathrm{x} \rightarrow 1} \mathrm{~g}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow 1} \mathrm{f}(\mathrm{x})=0$, and then $\lim _{\mathrm{x} \rightarrow 1} \frac{f(x)}{g(x)}$ is undefined.
(2) True False If $\mathrm{f}^{‘}(2)=0$ and f " $(2)>0$ then f has a local maximum at $\mathrm{x}=2$.
3. The graph of $\mathbf{y}=\mathbf{f}(\mathbf{x})$ is shown.
(a) At $\mathrm{x}=5 \mathrm{f}$ has a local MAX MIN NEITHER (circle one).
(2) (b) At $x=1 \mathrm{f}$ has a local MAX MIN NEITHER (circle one).
(2) (c) At $x=3 \mathrm{f}$ is INCREASING DECREASING (circle one)
(d) At $x=3 \mathrm{f}$ is concave UP DOWN NEITHER (circle one)
(2)
(e) f has an Inflection Point at $\mathrm{x}=$

4. $f(x)=x^{3}-6 x^{2}+9 x+5$ on the interval $-1 \leq \mathrm{x} \leq 5$. Use CALCULUS to answer these.
(4) (a) f has critical numbers at $\mathrm{x}=$
(2) (b) f has local maximum(s) at $\mathrm{x}=$ \qquad
(2) (c) The global minimum value of f is \qquad
(2)
at $x=$ \qquad
(2) (d) at $\mathrm{x}=3$ the graph of $\mathrm{f}(\mathrm{x})$ is concave UP DOWN NEITHER
(2) (e) f has Inflection Point(s) at $\mathrm{x}=$ \qquad
(4) (f) Sketch a good graph of f
(4) (g) According to the Mean Value Theorem there is a value $\mathrm{x}=\mathrm{c}$ between -1 and 5 so that $\mathrm{f}^{\mathrm{c}}(\mathrm{c})=$ \qquad
(Show your calculus work. No work $=$ no points.)

5. (a) The graph of $y=f(x)$ is shown for $0 \leq x \leq 6$. Plot and label the location(s)
(2) of the c values from the Mean Value Theorem.
(b) According to the Mean Value Theorem, if your average velocity driving from Seattle to Portland was 60 mph then
(2) \qquad (fill in)

6. $f^{\prime}(x)=(x-1)(x-4)^{2}(x-6)^{2} \quad$ (circle the correct answer)
(2) (a) At $\mathrm{x}=0 \mathrm{f}$ is Increasing Decreasing Neither
(2) (b) At $x=5 \mathrm{f}$ is Increasing Decreasing Neither
(2) (c) $f(1)$ is LocalMax LocalMin Neither
(2) (d) $f(6)$ is LocalMax LocalMin Neither
7. $f^{\prime}(x)=20 x^{4}+6 e^{3 x}-4 \sin (x)+1$ and $f(0)=13$.

Then $\mathrm{f}(\mathrm{x})=$ \qquad
(6)
8. The graph of $y=f$ ' (x) is shown on the top graph and $f(0)$ is given on the bottom graph. On the lower axis sketch a good graph of $y=f(x)$.
(4)

9. On the given axes sketch a continuous function $y=f(x)$ so that $f(1)=f(3)=f(5)=f(7)=2$ (those points are on the figure)
(2) (a) f ' (1) $=-2$ and f ' $(1)<0$
(2) (b) f ' (3) is undefined and f is increasing at $x=3$
(2) (c) f ' $(5)=0$ and $x=5$ is NOT a local max or min of f
(2) (d) $f^{'}(7)=2$ and $x=7$ is an Inflection Point of f

10. If $f(x)=e^{\left(-x^{2}\right)}$ then $f^{\prime}(x)=-2 x \cdot e^{\left(-x^{2}\right)}$.

Then f has Inflection Point(s) at $\mathrm{x}=$ \qquad
(4)
11. If the units of x are trees and the units of y are birds then the units of $\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}$ are (2)
11. Do TWO of these max/min problems. (If you do all 3 I will only grade A ad B. (6 points each) (Show your work. Organize your work so I can understand it. No work = no points.)
A. You have 96 square inches of tin to make into a cylindrical can (see figure). Use calculus to find the dimensions of the can will maximize the volume of the can.
(Data: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$, surface area $=\pi \mathrm{r}^{2}+2 \pi \mathrm{rh}$)
 r= \qquad $\mathrm{h}=$ \qquad (2 decimal places)
B. You have 225 square inches of tin to build a box (no top) that has one divider (see figure) and is 3 times as long as it is wide (put $\mathrm{x}=$ width). What dimensions will maximize the volume? (integers or 2 decimal places)
$\mathrm{x}=$ width $=$ \qquad length $=$ \qquad height $=$ \qquad
C. You want to connect towns A and B with a cable (see figure). It costs $\$ 8$ per mile to put cable in water and $\$ 2$ per mile to put cable on land. What value of x will minimize the total cost of connecting A and B ? $\mathrm{x}=$ \qquad

BONUS (+2 if correct)
Name the two co-inventors of calculus: \qquad and \qquad

The end!! (Total $=100+2$ bonus.) Tests back tomorrow.

