Show Your Work!

 Good Luck!Nov. 5, 2019 Quiz \#5 A

Name \qquad (please print)

1. $x^{3}+x y^{3}+e^{3 y}=4 x+1$. (Show your work!)
(a) Calculate $\mathrm{y}^{\text {' }}$ at $(2,0) . \mathrm{y}^{\text {' }}=$ \qquad
(3) (b) The equation of the tangent line to this curve at $(2,0)$ is $\mathrm{L}(\mathrm{x})=$ \qquad
(2)
(c) Use the tangent line in part (b) to approximate y when $\mathrm{x}=2.04 . y \approx$ \qquad
2. Use Logarithmic Differentiation to determine a differentiation pattern/rule for $D\left(F^{G}\right)$
(4) when F and G are functions of x . (Circle your final result.)

$$
\mathrm{D}\left(\mathrm{~F}^{\mathrm{G}}\right)=
$$

3. (a) True False If $f(3)$ is a max then f ' $(3)=0$.
(b) True False If $f(3)=0$ then $f(3)$ is a max or min of $f(x)$
(c) True False If f ' $(3)=2$ then $f(3)$ is NOT a max or min of $f(x)$ (1 each)
4. You have 42 feet of fencing to create the pens shown in the diagram. What dimensions will maximize the total enclosed area?
\qquad $y=_$) \qquad area $=$ \qquad
(4)

Bonus (+1) At what college did David Blackwell teach or what was his favorite part of calculus?

