Math 151

Show Your Work!

Good Luck!

Nov.12, 2019
Quiz \#6 A (last one!)

Name \qquad

1. The graph of $\mathbf{y}=\mathbf{f}(\mathbf{x})$ is shown.
(2) (a) According to the Mean Value Theorem, there is a value of c between 1 and 6 so that f ' $(\mathrm{c})=$ \qquad
(2) (b) On the graph label the location(s) of all of the c 's that satisfy the Mean Value Theorem.

2. The graph of $\mathbf{y}=\mathbf{f}$ '(\mathbf{x}) is shown.
(a) At $\mathrm{x}=2 \mathrm{f}$ has a local MAX MIN NEITHER (circle one).
(4) (b) At $x=3 \mathrm{f}$ has a local MAX MIN NEITHER (circle one).
(c) At $\mathrm{x}=1 \mathrm{f}$ is INCREASING DECREASING (circle one)
(d) Which is largest? $f(1) \quad f(2) \quad f(3) \quad f(4) \quad$ (circle one)

3. $g^{\prime}(x)=6 x^{2}+2 \mathrm{e}^{\mathrm{x}}-3 \sin (\mathrm{x})+4$ and $\mathrm{g}(0)=10$. Then

$$
g(x)=
$$

\qquad
(3)
4. $\mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{x}-5}{\mathrm{x}-2}$ on the interval $1 \leq \mathrm{x} \leq 9$ has critical numbers at $\mathrm{x}=$ \qquad
(2)
5. (a) If $f^{\prime}(x)=g$ ' (x) for all x, then $f(x)$ and $g(x)$ \qquad (fill in)
(3) (b) If $g(2)$ is a global minimum of g, then $g '(2)=0$. True False (circle one)
(c) f ' $(x)<0$ for all x then the maximum of f on $[2,6]$ occurs at $x=$ \qquad
6. The graph of $y=f$ ' (x) is shown and $f(0)=3$. Sketch a good graph of the shape of f.
(3)
7. $g^{\prime}(x)=(x-1)(x-3)^{2}$
(a) $g(1)$ is a local Maximum Minimum

Neither
(circle one)
(2) (b) $g(3)$ is a local Maximum Minimum Neither (circle one)

