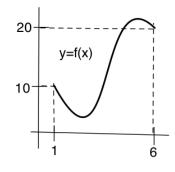
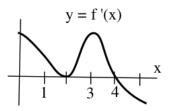
Show Your Work! Good Luck! Math 151 Nov.12, 2019 Quiz #6 A (last one!)

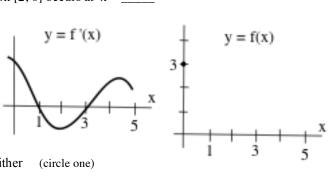

(please print)


Name _

- 1. The graph of $\mathbf{y} = \mathbf{f}(\mathbf{x})$ is shown.
- (2) (a) According to the Mean Value Theorem, there is a value of c between 1 and 6 so that f '(c) = _____
- (b) On the graph label the location(s) of all of the c's that satisfy the Mean Value Theorem.

2. The graph of y = f'(x) is shown.

- (a) At x = 2 f has a local MAX MIN NEITHER (circle one).
- (4) (b) At x=3 f has a local MAX MIN NEITHER (circle one).
 - (c) At x = 1 f is INCREASING DECREASING (circle one)
 (d) Which is largest ? f(1) f(2) f(3) f(4) (circle one)


3.
$$g'(x) = 6x^2 + 2e^x - 3sin(x) + 4$$
 and $g(0) = 10$. Then
 $g(x) =$ ______(3)

4.
$$f'(x) = \frac{x-5}{x-2}$$
 on the interval $1 \le x \le 9$ has critical numbers at $x =$ _____(2)

- 5. (a) If f'(x)=g'(x) for all x, then f(x) and g(x) _____ (fill in)
 (3) (b) If g(2) is a global minimum of g, then g '(2)=0. True False (circle one)
 (c) f '(x) < 0 for all x then the maximum of f on [2, 6] occurs at x = _____
- The graph of y = f '(x) is shown and f(0)=3.
 Sketch a good graph of the shape of f.

7. $g'(x) = (x-1)(x-3)^2$

(3)

(a) g(1) is a local Maximum Minimum Neither (circle one)(b) g(3) is a local Maximum Minimum Neither (circle one)

Bonus (+1 if correct) After age 30 what was Newton's job?