

2. Using the methods of this class calculate the following limits. (Show your work. No work = no points.)

(3) (a)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 + 2x - 8} =$$
 (3) (b) $\lim_{x \to 2} \frac{1 - |(x - 5)|}{x^2 - x} =$ (as an exact fraction)

(3) (c)
$$\lim_{x \to 1^{-}} \frac{INT(2+x)}{x+4} =$$
 (3) (d) $\lim_{x \to 0} \left\{ 2 + \frac{\sin(5x)}{3x} \right\} =$ (to 2 decimal places)

3. Write the equation of the tangent line to the graph of $f(x) = x^3 + \frac{8}{x} - 3x + 1$ when x = 2 (show work!)

- See Fig. 2. A is fixed. As B moves along the curve towards A, the slope of the AB line: (circle one)
- (2) INCREASES or DECREASES or STAYS CONSTANT

5. F(w) is the number of fish in Pine Lake on week w of fishing season.
Fig. 2 Translate the following into information that someone who does not know calculus can understand.
Use complete sentences. "F(4) = 438 and F ' (4) = -72 "

(4)

(4)

- Fig. 7 shows the upward velocity of a toy airplane during a period of several minutes.
- (2) (a) From t = 2 to t = 3 minutes, the airplane was RISING FALLING (circle one)
- (2) (b) At what time was the airplane highest ?

7.
$$g(x) = \begin{cases} A + x^2 & \text{if } x < 1 \\ 5x + 1 & \text{if } 1 \le x < 4 \\ B - 3x & \text{if } x \ge 4 \end{cases}$$

t = _____

(i) 10 -10 Fig. 3

4 (a) Find A so g is continuous at x = 1. A = _____

(b) Find B so g is continuous at x = 4. B = _____

(2)(2)

8. (a) Carefully **define** the derivative

$$f'(x) = \frac{d f(x)}{d x} =$$

(3)

(b) Give one example of what f'(3) measures?

(2)

(c) If the units of x are meters and the units of f are dollars, then the units of $\frac{d f(x)}{d x}$ are _____

9. Fig. 4 shows the graph of y = f(x). On the lower part sketch the graph of y = { slope of f(x) } = f'(x).

(4)

(2)

10. True or False (write the entire word)

(1) _____ If f is a continuous function and
$$\lim_{x \to 3} f(x) = 4$$
 then $f(3) = 4$

(1) _____ If g(x) is differentiable at x=2 then g(x) is continuous at x=2.

11. Calculate these derivatives using the methods of this class -- show your work. CIRCLE YOUR ANSWER.

You do NOT need to simplify once you have taken all of the derivatives in a problem. Λ

(a)
$$f(x) = Ax^5 + Bx^2 - Cx + \pi^2$$

(b) $g(t) = \frac{4}{t^2} + 6\sqrt{t} + 2t^5$
(A, B, C are constants)
 $f'(x) =$

(4 points each)

(c) (d)
$$h(x) = (x^5 + 3) \cdot \sin(x)$$

 $D(h(x)) = g'(x) = g'(x) = g'(x)$

(e)
$$f(x) = 2x^4 + \frac{6}{x} + 5x$$
 $f''(x) = D(D(f(x)) =$
(This is just the derivative of the derivative.)

(This is just the derivative of the derivative.)

(f)
$$D\left(\frac{x^3+4}{x^2+5}\right) =$$
 (g) $D(|x-4|) =$

12. The values for f and g and their derivatives are given in the

table. Use these values to find these derivatives. Each answer should be a number.

At x = 1 D(2+3f(x)+g(x)) =_____ (2 each)

At
$$x = 1$$
 $D(f(x) \cdot g(x)) =$ _____

At x=2
$$D(x^2 \cdot f(x)) =$$
 _____ At x=0 $D\left(\frac{g(x)}{f(x)}\right) =$ _____

13.
$$f(x) = x^3 - 6x^2 + 3x + 2$$
. Find all values of x so that $f'(x)=0$. $x =$ _____(4)

14. If f'(x) is always negative and f(3) = 0 then (circle one) (2) (a) f(2) < 0(b) f(2) = 0(c) f(2) > 0(d) not enough information

15. If $f(x) \le 0$ for all x values, then (circle one)

(2) (a) f'(x) is always positive (b) f'(x) is sometimes positive (c) f'(x) is never positive (d) not enough information

Bonus (+1 each if correct)

Find a function f(x) so that $f'(x) = 12x^3 + 3\sin(x) + 2$. f(x) =_____

What was on the wallpaper of Kovalevsky's childhood bedroom or what geological feature is named after her?

The End -- tests back tomorrow (Possible points = 101 + 2 bonus points)