Math 151

Show Your Work!
Good Luck!

Nov. 19, 2019
Test \#3 A

Name \qquad (please print)

1. $x^{3}+x^{2} y^{3}+6 \sin (3 y)=y^{2}+1$. (Show your work!)
(4) (a) Calculate $\mathrm{y}^{\text {' }}$ at $(1,0) . \mathrm{y}^{\text {' }}=$ \qquad
(3) (b) The equation of the tangent line to this curve at $(1,0)$ is $\mathrm{L}(\mathrm{x})=$ \qquad
(c) Use the tangent line in part (b) to approximate y when $\mathrm{x}=1.03 . y \approx$ \qquad
(b) Use log. differentiation: $\frac{d}{d x}(5+\sin (x))^{x}=$
(5) (circle your answer)
2. True or False (circle the correct answer)
(2) True False If $g(x)$ is differentiable and decreasing for $1 \leq x \leq 6$ then $g^{\prime}(4)<0$.
(2) True False If $f(3)$ is a local maximum for f, then $f^{\prime}(3)=0$.
(2) True False If $g^{\prime}(2)$ is undefined then $g(2)$ is a local max or local min.
(2) True False If $\lim _{\mathrm{x} \rightarrow 1} \mathrm{~g}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow 1} \mathrm{f}(\mathrm{x})=0$, and then $\lim _{\mathrm{x} \rightarrow 1} \frac{f(x)}{g(x)}=1$.
(2) True False If f' $(2)=0$ and $f^{\prime}{ }^{\prime}(2)<0$ then f has a local maximum at $x=2$.
3. The graph of $\mathbf{y}=\mathbf{f}$ ' (\mathbf{x}) is shown.
(2) (a) At $x=3$ f has a local MAX MIN NEITHER (circle one).
(2) (b) At $\mathrm{x}=5 \mathrm{f}$ has a local MAX MIN NEITHER (circle one).
(2) (c) At $x=7 \mathrm{f}$ is INCREASING DECREASING NEITHER (circle one)
(2) (d) At $\mathrm{x}=4 \mathrm{f}$ is concave UP DOWN NEITHER (circle one)
(2) (e) f has an Inflection Point at $x=$ \qquad

4. $f(x)=x^{3}-9 x^{2}+24 x+3$ on the interval $-1 \leq \mathrm{x} \leq 5$.

Use CALCULUS to answer these.
(4) (a) f has critical numbers at $\mathrm{x}=$
(2) (b) f has local maximum(s) at $\mathrm{x}=$ \qquad
(2) (c) The global minimum value of f is \qquad
(2) at $x=$ \qquad
(2) (d) at $\mathrm{x}=2$ the graph of $\mathrm{f}(\mathrm{x})$ is concave UP DOWN NEITHER
(2) (e) f has Inflection Point(s) at $\mathrm{x}=$ \qquad
(4) (f) Sketch a good graph of f
(4) (g) According to the Mean Value Theorem there is a value $\mathrm{x}=\mathrm{c}$ between -1 and 5 so that $\mathrm{f}^{\mathrm{c}}(\mathrm{c})=$ \qquad
(Show your calculus work. No work $=$ no points.)

5. (a) The graph of $y=f(x)$ is shown for $0 \leq x \leq 6$.

Plot and label the location(s) of the c values
(2) from the Mean Value Theorem.
(b) According to the Mean Value Theorem, if the temperature
increased 21 degrees from 1 PM to 8 PM then
(2) \qquad (fill in)

6. $f^{\prime}(\mathrm{x})=(\mathrm{x})(\mathrm{x}-2)^{2}(\mathrm{x}-5) \quad$ (circle the correct answer)
(2) (a) At $x=1 \mathrm{f}$ is Increasing Decreasing Neither
(2) (b) At $x=3 \mathrm{f}$ is Increasing Decreasing Neither
(2)
(c) $f(2)$ is LocalMax LocalMin Neither
(2)
(d) $f(5)$ is LocalMax LocalMin Neither
7. $\mathrm{f}^{\prime}(\mathrm{x})=12 \mathrm{x}^{3}+8 \mathrm{e}^{2 \mathrm{x}}-4 \cos (\mathrm{x})+5$ and $f(0)=9$.

Then $\mathrm{f}(\mathrm{x})=$ \qquad
(6)
8. The graph of $y=f$ ' (x) is shown on the top graph and $f(0)$ is the dot on the bottom graph. On the bottom axis sketch a good graph of $y=f(x)$.
(4)

9. On the given axes sketch a continuous function $y=f(x)$ so that $f(1)=f(3)=f(5)=f(7)=2$ (those points are on the figure)
(2) (a) $f^{\prime}(1)=-1$ and $f^{\prime \prime}(1)>0$
(2) (b) $f^{\prime}(3)=0$ and $x=3$ is NOT a local max or min of f
(2) (c) $f^{\prime}(5)=-1$ and $x=5$ is an Inflection Point of f
(2) (d) f '(7) is undefined and f is decreasing at $x=7$

10. If the units of x are dollars and the units of y are miles then
the units of $\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}$ are \qquad
(2)
11. Do TWO of these max/min problems. (If you do all 3 I will only grade A ad B. (6 points each)
(Show your work. Organize your work so I can understand it. No work = no points.)
A. Find the value of x (in terms of A and C) that maximizes the shaded area.
$\mathrm{x}=$ \qquad
B. You have 150 square inches of tin to build a box (no top) that has two dividers (see figure) and is 2 times as long as it is wide (put $\mathrm{x}=$ width). What dimensions will maximize the volume? (integers or 2 decimal places)
 $\mathrm{x}=$ width $=$ \qquad length $=$ \qquad height $=$ \qquad
C. Your very smart dog starts at A (see figure) and wants to reach the ball at B as quickly as possible. The dog can run at 5 feet/second and can swim at 2 feet $/$ second. The dog runs along the land from A to C and then swims from C to B. What value of x will minimize the total time to reach the ball?

$$
x=\ldots \quad(2 \text { decimal places })
$$

BONUS (+2 if correct)

Name the two co-inventors of calculus: \qquad and \qquad
The end!! (Total $=100+2$ bonus.) Tests back tomorrow.

