

- 2. Calculate the following derivative. Circle your answer. (Do NOT simplify your answer.) (3)  $y = \frac{7}{x} + \sin(3x)$  y''=
- 3. The location of a bug at time t minutes is x(t) = 5 + 2t  $y(t) = 3t + t^3$  feet. (UNITS!)
- (2) (a) When t=1 the speed of the bug is \_\_\_\_\_
- (2) (b) When t=1, the equation of the tangent line to the bug's path is y =\_\_\_\_\_

4. A and P are functions of the variable t. Then  $\frac{d}{dt}(e^A - \sin(Px)) =$ 

(2)

(4)

A crystal has a square base (see diagram). When the base B is 3 cm and the height H is 7 cm the base is increasing at a rate of 2 cm/day and the height is increasing at a rate of 3 cm/day. At that time how fast is the volume changing?



6.  $f(x) = x^2 - 3x + 1$ . Apply Newton's Method starting with  $x_0 = 1$  to calculate  $x_1$  and  $x_2$ .  $x_1 =$ \_\_\_\_\_\_  $x_2 =$ \_\_\_\_\_\_(3)

7. The figure shows the graph of f(x) and the location of x<sub>0</sub>.
Find and LABEL the locations of x<sub>1</sub> and x<sub>2</sub> obtained by using Newton's Method..

