Name \qquad (please print)

1. The graph of $\mathbf{y}=\mathbf{f}$ '(\mathbf{x}) is shown.
(a) At $\mathrm{x}=1 \mathrm{f}$ has a local MAX MIN NEITHER (circle one).
(b) At $x=4 \mathrm{f}$ has a local MAX MIN NEITHER (circle one).
(c) At $\mathrm{x}=3 \mathrm{f}$ is INCREASING DECREASING (circle one)
(d) $\mathrm{f}(\mathrm{x})$ is largest when $\mathrm{x}=\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & \text { (circle one) }\end{array}$

2. The graph of $y=f(x)$ is shown.
(a) According to the Mean Value Theorem, there is a value of c between 1 and 5 so that $\mathrm{f}^{\prime}(\mathrm{c})=$ \qquad
(b) On the graph label the location(s) of all of the c's that satisfy the Mean Value Theorem.

3. (a) If $f^{\prime}(x)=g$ ' (x) for all x, then $f(x)$ and $g(x)$ \qquad (fill in)
(b) If g is differentiable and $g(2)$ is a global minimum, then g ' $(2)=0$. True False (circle one)
(c) If $f(2)=7=f(5)$ then there is a c between 2 and 5 so that f ' $(c)=0$. True False (circle one)
(d) If f ' $(x)>0$ for all x then f is increasing on [1,7]. True False (circle one)
4. You have 280 feet of wire to enclose the pens in the, The outside fence (thick lines) uses 2 strands of wire and the inside fences (thin lines) consist of 1 strand of wire. What dimensions will maximize the total enclosed area. (Use calculus. Show your work.) $x=$ \qquad $y=$ \qquad
(6)

5. $f \quad(x)=(x)(x-2)(x-4)(x-7)$.
(2)
$f(4)$ is a Max Min Neither (circle one)
$\mathrm{f}(5)$ is a Max Min Neither (circle one)
