Show your work.

Name \qquad

1. $g(x)$ is a continuous function \qquad \rightarrow
(3) (a) $g(x)=0$ at least \qquad times

x	0	1	2	3	4	5
$\mathrm{~g}(\mathrm{x})$	1	3	-1	-2	4	-3

(b) $g(x)=2$ at least \qquad times
(c) $g(x)=-2.5$ at least \qquad times
2. (a) Define $f^{\prime}(x)=$
(2) (the definition)
(2) (b) What does $\mathrm{f}^{\text {' }}$ (x) measure? (just give one)
3. The graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is shown. \qquad
On the lower axes graph $\mathrm{y}=\{$ slope of $\mathrm{f}(\mathrm{x})\}$
(3)
4. $g(x)=\left\{\begin{array}{ll}x+A & \text { if } x \leq 2 \\ x^{2}+3 & \text { if } 2<x \leq 3 \\ C-x & \text { if } x>3\end{array}\right\}$

What value of A will make $\mathrm{g}(\mathrm{x})$ continuous at $\mathrm{x}=2$? $\mathrm{A}=$ \qquad

x What value of C will make $\mathrm{g}(\mathrm{x})$ continuous at $\mathrm{x}=3$? $\mathrm{C}=$
(2)
5. (a) $f(x)=x^{2}+5 x+7$. Evaluate and simplify (no limit) $\frac{f(3+a)-f(3)}{a}=$ \qquad
(3)
6. What is the equation of the line tangent to the graph of $f(x)=x^{3}-3 x+4$ at the point $(2,6) ?$

$$
y=
$$

\qquad
(4)
7. $f(x)=3 x^{2}-18 x+4$. At what value of x is $\mathrm{f}^{\prime}(\mathrm{x})=0 . \quad \mathrm{x}=$ $g(x)=2 x+\frac{18}{x}$. At what value of x is $\mathrm{g} '(\mathrm{x})=0 . \quad \mathrm{x}=$ \qquad
(2)

