Name \qquad

1. Write the equation of the line that goes through the point $(2,3)$ with slope 4 ? $y=$ \qquad
(2)
2. What is the (shortest) distance from the circle $(x-2)^{2}+(y-5)^{2}=9$ to the point $(4,1)$? \qquad
(2)
3. The following limits refer to the graph of f in the diagram.
(a) $\lim f(x)=$ \qquad $x \rightarrow 1$
(b) $\lim _{x \rightarrow 5^{+}} f(x)=$ \qquad
(1 each)
(c) $\lim f(x)=$ \qquad $x \rightarrow 3^{-}$
(d) $\lim _{x} f(x+1)=$ \qquad $x \rightarrow 3$

(e) $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=$ \qquad
4. The diagram shows the bacteria population (B) at different times (t$)$.
(2) (a) What is the average rate population change
from time $t=0$ to $t=2$ hours? \qquad
(b) The bacteria population is increasing more rapidly at

(1) $t=1 \quad t=2$ same (circle one)
5. $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-x-2}=$

$$
\lim _{x \rightarrow 4^{-}} \frac{|4-x|}{x-4}=
$$

$$
\lim _{x \rightarrow 3^{-}} \operatorname{INT}(x+4)=
$$

(2 each)
6. If $\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} g(x)=0$ then $\lim _{x \rightarrow 3} f(x) / g(x)$

Answer: \qquad
a) $=1$
b) $=3$
c) must be close to 1
d) is not defined
e) Not enough information is given
7. If the units of x are birds and the units of $y=f(x)$ are ccats, then the units of the slope are \qquad
(1)

Bonus (+1 if correct) Name an important mathematician who lived during the last 100 years. \qquad
(No one at BC is an important mathematician.)

