Show your work.

Name \qquad

1. $g(x)$ is a continuous function \qquad \rightarrow
(a) $g(x)=0$ at least \qquad times
(b) $g(x)=3$ at least \qquad times

x	0	1	2	3	4	5
$\mathrm{~g}(\mathrm{x})$	2	5	-2	3	1	-3

(c) $g(x)=-1$ at least \qquad times
2. (a) Define $f^{\prime}(x)=$
(2) (the definition)
(2) (b) What does f^{\prime} (x) measure? (just give one)

$y=$ SLOPE of f
3. The graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is shown.

On the lower axes graph $\mathrm{y}=\{$ slope of $\mathrm{f}(\mathrm{x})\}$
(3)
4. $g(x)=\left\{\begin{array}{lll}x+K & \text { if } & x \leq 3 \\ x^{2}+2 & \text { if } & 3<x\end{array}\right\}$

What value of K will make $\mathrm{g}(\mathrm{x})$ continuous at $\mathrm{x}=3$? $\mathrm{K}=$ \qquad
(1)
5. (a) $f(x)=x^{2}+3 x+1$. Evaluate and simplify (no limit) $\frac{f(2+c)-f(2)}{c}=$ \qquad
(3)
6. What is the equation of the line tangent to the graph of

$$
f(x)=x^{3}-2 x+1 \quad \text { when } x=2 ?
$$

$$
y=
$$

\qquad
(4)
7. $f(x)=5 x^{2}-3 x+7$. At what value of x is $\mathrm{f} '(\mathrm{x})=2 ? \mathrm{x}=$ \qquad
(1)

$$
\mathrm{D}\left(3 x+\frac{2}{x}\right)=
$$

\qquad
(1)
8. If the units of x are fish and the units of $f(x)$ are trees, then the units of f ' (x) are \qquad
(1)

Bonus (+1 if correct) Name one project or field of mathematics that John von Neumann worked in. \qquad

