Show Your Work!
Good Luck!

January 23, 2018
Test \#1 A

Name \qquad

1. Use Fig. 1 to answer the following limit questions. (2 each)
(a) $\lim _{x \rightarrow 2} f(x)=$
(b) $\lim _{x \rightarrow 3^{-}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow 1^{+}} f(4-x)=$
(d) $\lim _{x \rightarrow 1^{+}} f(2 x+1)=$ \qquad
(e) $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=$ \qquad
2. Using the methods of this class calculate the following limits. (Show your work. No work $=$ no points.)
(3) (a) $\lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x^{2}+x-12}=$ (as an exact fraction)
(3) (b) $\lim _{x \rightarrow 1} \frac{3-|x-2|}{x^{2}+3}=$
(as an exact fraction)
(3) (c) $\lim _{x \rightarrow 3^{-}} \frac{\operatorname{INT}(1+x)}{x+2}=-$
(3) (d) $\lim _{x \rightarrow 0} \frac{3^{x}-1}{x}=$ \qquad (to 2 decimal places)
3. Write the equation of the tangent line to the graph of $f(x)=x^{2}+\frac{4}{x}-3$ when $\mathrm{x}=2$ (show work!)
\qquad
=
(4)
4. See Fig. 6 (Circle the correct response in a and b.)
(2) (a) Point B is fixed. As A moves along the curve towards B, the slope of the $A B$ line:

INCREASES or DECREASES or STAYS CONSTANT
(2) (b) Point D is fixed. As E moves along the curve towards D , the slope of the DE line:

Fig. 6
5. Fig. 7 shows the upward velocity of a toy airplane during a period of several minutes.
(2) (a) From t $=2$ to $t=3$ minutes, the airplane was RISING FALLING (circle one)
(2) (b) At what time was the airplane highest?

$$
t=\ldots
$$

6. $g(x)=\left\{\begin{array}{cc}A+2 x & \text { if } x<1 \\ 3 x+1 & \text { if } 1 \leq x<3 \\ 4 x+B & \text { if } x \geq 3\end{array}\right\}$
(a) Find A so g is continuous at $\mathrm{x}=1 . \mathrm{A}=$ \qquad
(b) Find B so g is continuous at $\mathrm{x}=3$. $\mathrm{B}=$ \qquad
(2)(2)
7. (a) Carefully define the derivative

$$
f^{\prime}(x)=\frac{d f(x)}{d x}=
$$

(4)
(b) Give one example of what $f^{\prime}(3)$ measures?
(2)
(c) If the units of x are dogs and the units of f are birds, then the units of $\frac{d \mathrm{f}(\mathrm{x})}{d \mathrm{x}}$ are \qquad
(2)
8. Fig. 10 shows the graph of $y=f(x)$. On the lower part
sketch the graph of $\mathrm{y}=\{$ slope of $\mathrm{f}(\mathrm{x})\}=\mathrm{f}^{\prime}(\mathrm{x})$.
(4)

Fig. 10
9. $\mathrm{T}(\mathrm{h})$ is the temperature (oC) at the height h meters ona hill. Clearly explain the meaning of $\mathrm{T}(500)=33$ and $\mathrm{T}^{\prime}(600)=-0.12$ (Use complete sentences.)
(4)
10. Calculate these derivatives using the methods of this class -- show your work. CIRCLE YOUR ANSWER.

You do NOT need to simplify once you have taken all of the derivatives in a problem.
(a) $f(x)=A x^{5}-B x^{2}+4 x-7^{2}$
(b) $g(t)=\frac{5}{t^{2}}+14 \sqrt{t}+t^{4}$
$f^{\prime}(x)=$

$$
\frac{d g(t)}{d t}=
$$

(4 points each)
(c) (d) $h(x)=\left(7+x^{5}\right) \cdot \sin (x)$
(d) $g(x)=\left(5+3 x^{4}\right)^{2}$ $D(h(x))=$
$g^{\prime}(x)=$
(e) $f(x)=4 x^{5}+\frac{6}{x}+5 x^{2} \quad D(D(f(x))=$ (This is just the derivative of the derivative.)
(f) $D\left(\frac{x^{2}+5}{x+\cos (x)}\right)=$
(g) $D\left(\cos ^{3}(x)\right)=$
11. The values for f and g and their derivatives are given in the table. Use these values to find these derivatives. Each answer should be a number.

x	0	1	2					
$\mathrm{f}(\mathrm{x})$	2	4	2					
$\mathrm{f}^{\prime}(\mathrm{x})$	3	-1	5		x	0	1	2
:---:	:---:	:---:	:---:					
$\mathrm{~g}(\mathrm{x})$	3	0	4					
$\mathrm{~g}^{\prime}(\mathrm{x})$	1	-4	2					

At $\mathrm{x}=2 \quad D(2+4 f(x)+3 g(x))=$ \qquad
(2 each)
At $\mathrm{x}=2 \quad D(f(x) \cdot g(x))=$ \qquad
At $x=2 \quad D\left(\frac{f(x)}{1+g(x)}\right)=$ \qquad
12. $f(x)=x^{3}-3 x^{2}-24 x+7$. Find all values of x so that $\mathrm{f}^{\prime}(\mathrm{x})=0 . \quad \mathrm{x}=$ \qquad
(4)
13. If f ' (x) is always negative and $f(3)=0$ then (circle one)
(2) (a) $f(2)<0$
(b) $\mathrm{f}(2)=0$
(c) $\mathrm{f}(2)>0$
(d) not enough information
14. If $f(x) \geq 0$ for all x values, then (circle one)
(2) (a) f ' (x) is always positive
(b) f '(x) is sometimes positive
(c) $\mathrm{f}(2)>0$
(d) not enough information
15. (a) Draw a function f for $1 \leq x \leq 3$ so $f(2)=1$
and $\lim _{x \rightarrow 2} f(x)=2$

(b) Draw a function f for $1 \leq \mathrm{x} \leq 3$ so $f(2)=2$
and $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=2$
each)

(c) Draw a continuous function f with $f^{\prime}(1)>0, f^{\prime}(2)=0$ and $f^{\prime}(3)>0$

Bonus (+1 if correct)
Find a function $\mathrm{f}(\mathrm{x})$ so that $f^{\prime}(x)=15 x^{4}-3 \cos (x)+5 . \quad \mathrm{f}(\mathrm{x})=$ \qquad

The End -- tests back tomorrow (Possible points $=102+1$ bonus point)

