1. Calculate these 7 derivatives (Do not simplify once all derivatives are calculated.)

Show work & circle your final answers.

(a)
$$\frac{d}{dt} \left(\ln \left(t^2 + e^{3t} \right) \right) =$$

(5 each)

(b)
$$D(\sin^3(2x^5+7)) =$$

(c)
$$D(e^{5x} \cdot \tan(2x+3)) =$$

(d) If
$$f(x) = \sqrt{e^{Ax} + \sec(Bx)}$$
 (A and B are constants), then $f'(x) =$

(e)
$$\frac{d}{dt}\left(\frac{4^t+3}{\cos(5t)}\right) =$$

(f) If
$$g(x) = 5x^2 + e^{7x} + \frac{4}{x^3} + 9$$
 then $g''(x) =$

2. The units of D are days, F units are feet. Give the units for the following:

(2) (a)
$$\frac{dD}{dF}$$
 (2) (b) $\frac{d^2D}{dF^2}$

3. The figure shows the graph of f(x) and the location of x₀.
Find and LABEL the locations of x₁ and x₂ obtained by using Newton's Method..
(4)

4.
$$f(x) = x^3 - 5x + 6$$
. If we start with $x_0 = 1$,
then using Newton's Method $x_1 =$ ______, $x_2 =$ ______ (2 decimal places)
(4)

5. (a) See the figure at the right, and use that information to fill in the blanks in the table with POS, NEG, ZERO or UND when t=2.

(8)

(b) When t=3, $\frac{dy}{dt}$ is POS, NEG, ZERO or UND

- dx/dt dy/dt dy/dx
- 6. The location of an robot at time t minutes is $x(t) = 5t + 2\sin(t)$, $y(t) = t^2 3\cos(t)$ meters. (RADIAN mode!) (Round answers to TWO decimal places.)

(2) (a) When t = 2 minutes, the location of the robot is. (,)

(6) (b) When
$$t = 2$$
 minutes, $\frac{dx}{dt} = \underline{\qquad} \frac{dy}{dt} = \underline{\qquad} \frac{dy}{dt} = \underline{\qquad} \frac{dy}{dx} = \underline{\qquad}$

(3) (c) When t = 2 minutes, the SPEED of the robot is _____

- 7. A bug is crawling back and forth along the x-axis (marked in cm), and the bug's location at time t minutes is $h(t) = t^3 6t^2 + 70$ cm. (Be sure to include units with your answers.)
- (2) (a) Where is the bug at 2 minutes after starting? _____
- (3) (b) What is the bug's velocity after 2 minutes?
- (3) (c) When will the bug change directions?
- (3) (d) How far will the bug crawl during the first 6 minutes?
- (3) (e) When is the bug's acceleration equal to 0?

- 9. The number of fish in the lake at time t days is $F(t) = 300 + 90\cos(t) + 50 \cdot e^{-0.3t}$.
- (1) (a) How many fish are present at time t = 3?
- (4) (b) How fast is the fish population changing when t = 3?

- 10. (a) $f(x) = \sqrt{x}$. Find the linear approximation L(x) of f(x) when x = 81. L(x) = _____
 - (b) Use your result in part (a) to approximate the value of $\sqrt{83.6} \approx$ _____ (3 decimal places)
 - (c) For this f(x) and at x=81, df =_____
- (3) (3) (2)

- 11. Do 2 of these problems. (If you do all three, I will only grade A and B.)
 - A. You are on a dock that is 10 feet above the surface of the water, and you are pulling in on a boat rope at a rate of 3 feet per minute. How fast is the boat approaching the bottom of the dock when the boat is 25 feet from the bottom of the dock? ______ (include units)
 - B. Sand is pouring onto a pile so that the **height is always the same as the radius** of the pile. How fast is the **volume** of the sand pile changing when the height is 11 feet and the radius is increasing at a rate of 4 feet per day? $(V = \frac{1}{3}\pi R^2 H)$

_____ (include units)

C. A rectangle has a length of 20 feet and a width of 12 feet. The length is decreasing at a rate of 2 feet per hour and the width is increasing at a rate of 3 feet per hour. How fast is the rectangle's **Area** changing?

_____ (include units)

Problem A B C (circle one) (6 each)

Problem A B C (circle one)

BONUS: (+2 if correct) Find a function g(x) so $D(g(x)) = \frac{3x^2 + \cos(x)}{x^3 + \sin(x)} + 15e^{3x}$. g(x) = _____