Show Your Work!
Good Luck!

March 11, 2018
Test \#3A

Name \qquad (please print)

1. Show your work. No work $=$ no points.
(a) $x^{3} y^{2}+2 e^{x}=2 y^{3}-14 . \quad \frac{d y}{d x}=$ \qquad
At $(0,2)$ slope $=$ \qquad
(7)
(b) $f(x)=A e^{4 x}+\frac{B}{x}+\cos (C x)+7 . \quad$ (A, B and C are constants.)

Calculate $f^{\prime \prime}(x)=$
(5)
2. True or False (circle the correct answer)

(2)	True	False	If $\mathrm{g}(\mathrm{x})$ is continuous and decreasing for $1 \leq x \leq 6$ then g ' $(4)<0$
(2)	True	False	If $f(3)$ is a local minimum for f , then $\mathrm{f}^{\prime}(3)=0$
(2)	True	False	If g '(2)=0 then $\mathrm{g}(2)$ is a local max or local min.
(2)	True	False	If $\lim _{x \rightarrow 1} g(x)=0$, then $\lim _{x \rightarrow 1}\{f(x) / g(x)\}$ does not exist.
(2)	True	False	If $f^{\prime}(2)=0$ and $f^{\prime}(2)=3$ then f has a local minimum at $x=2$.

3. The graph of $\mathbf{y}=\mathbf{f}$ '(\mathbf{x}) is shown.
(2) (a) At $x=1 \mathrm{f}$ has a local MAX MIN NEITHER (circle one).
(2) (b) At $x=7$ f has a local MAX MIN NEITHER (circle one).
(2) (c) At $x=6 \mathrm{f}$ is INCREASING DECREASING (circle one)
(2) (d) At $\mathrm{x}=4 \mathrm{f}$ is concave UP DOWN NEITHER (circle one)
(2)
(e) f has an Inflection Point at $x=$

4. $\quad f(x)=2 x^{3}-9 x^{2}+2$ on the interval $-1 \leq \mathrm{x} \leq 5$. Use CALCULUS to answer these.
(4) (a) f has critical numbers at $x=$
(2) (b) f has local maximum(s) at $\mathrm{x}=$ \qquad
(2) (c) The global minimum value of f is \qquad
(2)
at $\mathrm{x}=$ \qquad
(2) (d) at $x=3$ the graph of $f(x)$ is concave UP DOWN NEITHER
(2) (e) f has Inflection Point(s) at $\mathrm{x}=$ \qquad
(4) (f) Sketch a good graph of f
(4) (g) According to the Mean Value Theorem there is a value $x=c$ between -1 and 5 so that $\mathrm{f}^{\prime}(\mathrm{c})=$ \qquad
(Show your calculus work. No work $=$ no points.)

5. Use L'Hopital's Rule to calculate these limits.
(a) $\lim _{x \rightarrow 0} \frac{5 x+\sin (3 x)}{4 x}=$
(5)
(b) $\lim _{x \rightarrow \infty} \frac{x^{2}+5}{x \cdot \ln (x)}=$
(5)
6. $f(x)=C x^{4}-12 T x^{2} \quad$ (C and T are positive constants).

Find all x so that $f^{\prime}(x)=0 . \mathrm{x}=$ \qquad
(4)
7. Write the equation for each asymptote of $f(x)=\frac{4 x^{2}-16}{x^{2}-x-2}$
(3) (a) f has horizontal asymptote(s) at \qquad
(3) (b) f has vertical asymptote(s) at \qquad
8. Write the equation for the horizontal asymptote(s) of $f(x)=\frac{3 x^{2}-x \cdot \sin (x)}{2 x^{2}+77}$.
(3)
9. Some quickies
(a) $\quad D(\ln (7 x+\cos (x))=$ \qquad
(3)
(b) The units of x are dollars and the units of y are miles.

Then the units of $\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}$ are \qquad
(3)
10. The graph of $y=g$ ' (x) is shown on the top graph and $g(0)$ is given on the bottom graph. On the lower axis sketch a good graph of $y=g(x)$.
(4)

11. Do TWO of these max/min problems. (If you do all 3 I will only grade A ad B. (7 points each)
A. You have 72 square inches of tin to make into a cylindrical can (see figure).

Use calculus to find the dimensions of the can will maximize the volume of the can.
(Data: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$, surface area $=2 \pi \mathrm{r}^{2}+2 \pi \mathrm{rh}$)

$$
\mathrm{r}=\ldots \mathrm{h}=\ldots \text { (2 decimal places })
$$

(Show your work. Organize your work so I can understand it.
B. You want to connect towns A and B with a data wire (see figure). It costs $\$ 10$ per mile for wire in the water and $\$ 2$ per mile for wire on land. What value of x will minimize the total cost? $\mathrm{x}=$ \qquad (2 decimal places) (Use calculus and show your work)
C. A rectangle has base on the x -axis and one corner on the curve $y=B-C x^{2}$.

Find the value of x that maximizes the area of the rectangle. $x=$ \qquad

BONUS (+2 if correct)
Find a function f so that $\mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}^{2}+2 \cos (x)+3 e^{x}$ and $\mathrm{f}(0)=7 \quad \mathrm{f}(\mathrm{x})=$ \qquad

The end!! (Total $=102+2$ bonus.) Tomorrow: test back

