	Math 152	
Show Your Work!	January 20, 2009	Name
Good Luck!	Quiz #2 A	(please print)

1. State (carefully and completely) **Part 2** of the Fundamental Theorem of Calculus: If

(2)

then

2. Use calculus to evaluate these integrals. Show your work (no work = no points)

(a)
$$\int_{1}^{5} 3x^{2} - 8x \, dx =$$

(b) $\int_{1}^{4} \frac{3}{x} + \sqrt{x} \, dx =$ ______
(c) $\int_{1}^{5} (x^{2} + 4e^{2x} + \frac{5}{x}) \, dx =$ ______
(d) $\int_{1}^{5} \sin(3x + 5) + (2x + 1)^{3} \, dx =$ ______
(e) $\int_{1}^{5} \sin(3x + 5) + (2x + 1)^{3} \, dx =$ ______
(f) $\int_{2}^{5} \sin^{3}(2t) + \sqrt{t} \, dt =$ ______
(g) $\int_{2}^{6} \frac{d}{dx} \left(\int_{2}^{7} \sqrt{t + 3} + \sin(t^{2}) \, dt \right) =$ ______
(g) $\int_{1}^{6} \frac{d}{dx} \left(\int_{3}^{7} \sqrt{t + 3} + \sin(t^{2}) \, dt \right) =$ ______
(h) $\int_{1}^{6} \frac{d}{dx} \left(\int_{3}^{7} \sqrt{t + 3} + \sin(t^{2}) \, dt \right) =$ ______
(g) $\int_{1}^{6} \cos(t) - \frac{d}{dx} \left(\int_{3}^{7} \sqrt{t + 3} + \sin(t^{2}) \, dt \right) =$ ______
(h) $\int_{1}^{9} \frac{d}{dx} \left(\int_{3}^{7} \sqrt{t + 3} + \sin(t^{2}) \, dt \right) =$ ______
(h) $\int_{1}^{9} \sin(t) - \frac{1}{2} \int_{0}^{1} \frac{d}{dx} \int_{0}^{1}$