		Math 152							
Show Your Work! Good Luck!		January 26, 2009	Name						
		TEST #1 A		(please print)					
1.	Carefully and completely state Part I of the Fundamental Theorem of Calculus.								

(4) If

then

In Fig. 1 x is time (minutes) and y=f(x) is the upward velocity (feet/minute) of a balloon released from the ground.

- (a) When is the balloon highest? t = 0 1 2 3 4 5 6 (circle one)
- (b) At time x = 2 minutes the balloon was: (rising) (descending) (not enough information) (circle one)
- 3. The table shows the velocity of a truck when the stop light turns green.
 - (a) Use N = 6 and RIGHT endpointsto approximate the distance the trucktraveled during the first 6 seconds. (Show your work.)

t (sec)	0	1	2	3	4	5	6
vel (ft/sec)	0	20	40	50	60	70	80

(4) Approximate travel distance = _____

4. (a)
$$\frac{d}{dx} \left(\int \sin(x^3) \, dx \right) =$$

(8) (b) $\int \left(\frac{d}{dx} \left(\sin(x^3) \right) \right) \, dx =$ ______
(c) $\frac{d}{dx} \left(\int_{1}^{x^2} \sqrt{2 + t^3} \, dt \right) =$ ______
(d) Use your calculator to evaluate $\int_{1}^{3} \sqrt{2 + t^3} \, dt =$ _____ (round to 3 decimal places)
5. DEFINE $\int_{1}^{4} f(x) \, dx = \lim_{\rightarrow}$
(3)

6. Do the following integrals. Give numerical answers to 2 decimal places. Show your work.(No work = no points. Using fnINT() = no points.)

(a)
$$\int x^2 \cdot \cos(x^3 + 5) dx =$$

(5)

(b)
$$\int_{0}^{1} \frac{\cos(x)}{3 + \sin(x)} dx =$$

(5)

(c)
$$\int \sqrt{6x+7} \, dx =$$

(5)

(d)
$$\int_{1}^{3.6} x + INT(x) dx =$$

(6)

(e)
$$\int \sin^2(x) \, dx =$$

(4)

(f)
$$\int \frac{x^2 + 6x + 13}{x + 5} dx =$$

(5)

7. Calculate the Area between $f(x) = x^2$ and g(x) = 4 for $0 \le x \le 3$. Area = _____ (Show your work.)

(6)

8. Quickies: $\int e^{3x} dx =$ _____ $\int \sin(5t) dt =$ _____ $\int \sec^2(7x) dx =$ _____

- 9. $f(t) = 16 t^2$ is the velocity (feet/second) of a sled as it comes to a stop in 4 seconds.
- (3) (a) What was the average velocity of the sled during those 4 seconds?
- (4) (b) How long did it take the sled to travel the first 15 feet?

(round the part (b) answer to one decimal place.)

10. The middle graph below shows y = f(x) where x is hours and y is cats. Draw the left graph $y = \frac{d f(x)}{d x}$ and draw the right graph $y = \int_{0}^{x} f(t) dt$.

Put a scale (1, 2, 3, ...) on each y-axis, and give the units for each y variable.

- 11. Water is flowing into a tub at the rate (gal/min) shown in the figure.
- (2) (a) The tub contains the most water when t = 0 1 2 3 4 5 6
- (2) (b) The water is flowing fastest when t = 0 1 2 3 4 5 6

12. Biographies

(2) Name the two people credited with inventing calculus: _____ and ___