Good Luck!

February 15, 2011 TEST #2 B

Name _____ (please print = 1 point)

1. DEFINE:
$$\int_{a}^{b} f(x) dx = \lim_{\to}$$

(2)

2. Carefully and completely state **Part 2** of the Fundamental Theorem of Calculus.

(3) If

then

3. In building an integral application, step 1 is _____ (one word)

(1)

4. Represent the length of the curve $y=1+\sin(5x)$ from x=0 to $x=\pi$ as a definite integral and then **use your** calculator to evaluate the integral (2 decimal places).

$$L = \int$$
 = _____ (number)

(7)(2)

5. Represent the length of the ellipse (1 +3sin(t), 2+5cos(t)) $0 \le t \le 2\pi$ as a definite integral. Do NOT evaluate the integral.

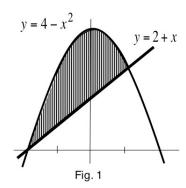
$$L = \int$$

(7)

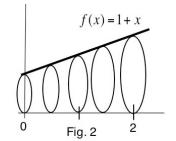
The shaded region in Fig. 1 is rotated around the x-axis.
 Represent the volume of this solid as a definite integral.
 Do NOT evaluate the integral.

volume =
$$\int$$

(7)



7. A solid in Fig. 2 consists of circles with bottoms on the x-axis and tops on the curve f(x) = 1 + x for $0 \le x \le 2$. Represent the volume of this solid as a definite integral. Do NOT evaluate.



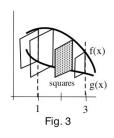
volume = \int

(7)

- 8. Quickies: Represent each volume as a definite integral:
 - (a) Fig. 3 volume = \int

(a) 1 ig. 5 volume

(b) Fig. 4 volume = \int



3

f(x) rotated about y=3

f(x)

3

Fig. 4

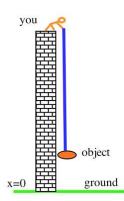
(2)

- 9. You are at the top of a H= 30 foot tall building and are lifting a W=200 pound object using a chain that weighs 0.6 pounds per foot of length. How much work do you do to lift the object from the ground to a height of 20 feet?
 - (a) work = \int

 $(a) \quad \text{work} = \mathbf{J}$

(b) Use antiderivatives to evaluate the integral in part (a). work = _____

(5)

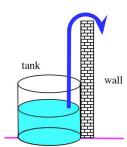


10. A cylindrical tank has a radius of 2 feet and is 6 feet tall. The tank is full of a liquid that has a density of 55 pounds per cubic foot. How much work is done to lift the top 4 feet of liquid over the top of a 13 foot tall wall?

Do not evaluate the integral.

work =
$$\int$$

(7)



11.	A spring has a natural length of 9 inches and a 2 pound force stretches it to a length of 15 inches. How much
	work is done to stretch the spring from a length of 10 inches to 16 inches? Use antiderivatives to evaluate the
	integral.

$$work = \int = \underline{\qquad} (2 \text{ decimal places})$$
(7)(4)

12. Three quick antiderivatives. (3 points each)

(a)
$$\int \cos^2(x) \ dx = \underline{\hspace{1cm}}$$

(b)
$$\int \sec^2(x) (5 + \tan(x))^3 dx =$$

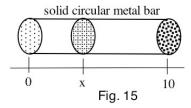
(c)
$$\int \frac{6}{x^2} dx =$$

- 13. Three objects are placed on the number line: (1) 4 pounds at x = 6, 7 pounds at x = 3, and 5 pounds at x = -4.
 - (1) (a) Total weight = _____
 - (3) (b) Moment about the origin M0 =
 - (3) (c) Center of mass = balance point = _____
 - (3) $(d_{moment about x=2}) = \underline{\hspace{1cm}}$

- 14. Write MAPLE commands (2 points each)
 - (a) To graph $y=x+\sin(x)$ for $1 \le x \le 5$:
 - (b) To evaluate $\int_{1}^{3} \sqrt{1+x} dx$:

- 15. Biographies. Name these people last names are enough. (1 point each)
 - (a) A-bomb, game theory, quantum mechanics, ...
 - (b) Worked for person (a) at Institute for Advanced Study, great communicator _____
 - (c) Magic! Quit high school and ran away from home
- 16. Something NEW. Do not panic. Think. (Step 1!!)

A 10 inch long metal bar (Fig. 15) has a radius of 2 inches and has a density at location x of $d(x) = 3 + \sin(x)$ pounds per cubic inch. Represent the total weight of the bar as a definite integral. Do NOT evaluate the integral.



(5) weight = \int

The end! (total points = 103)