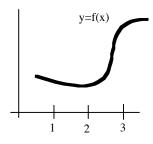
Math 152


1. (a) Give the antiderivative of $\sin^2(x)$: $\int \sin^2(x) dx =$

(2)

(b) The Average Value of $f(x) = \sin^2(x)$ for $0 \le x \le \pi$ is _____ (decimal to 2 places)

(2)

2. The figure shows a function y=f(x). Mark and label (with an A) on the y-axis the location of the average value of this function on the interval $1 \le x \le 3$.

3. (a) Represent the area between $f(x) = 3x^2$ and $g(x) = 4 - x^2$ for $-1 \le x \le 2$ as definite integral(s).

area =
$$\int$$

(4)

(2)

(b) Evaluate the integral(s) in part (a). area = _____ (decimal to 2 places)

(4)

4. Use your calculator to evaluate $\int_{1}^{3} \sqrt{\sin(x) + x^2} dx =$ (decimal to 2 places)

(2)

5.
$$\int \frac{6x}{1+x^2} dx = \frac{\int \cos(x)(3+\sin(x))^4 dx}{(2)} = \frac{1}{1+x^2} = \frac{1$$

6. If the units of x are "hours", the units of f(x) are "meters/hours" and the units of g(x) are "dollars"

then the units of $\int \frac{f(x)}{g(x)} dx$ are _____ (1)