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14.6 The Chain Rule(s)

You might remember this pattern as
“derivative of the outside function, eval-
uated at the inside function, times the
derivative of the inside function.”

You first encountered the Chain Rule in Section 2.4 and have used it
thousands of times since then. If y = F(x) is a differentiable function
of x and x = g(t) is a differentiable function of t, then the composite
function ϕ(t) = F (g(t)) is also differentiable and:

ϕ′(t) = F′ (g(t)) · g′(t)

Often the Leibniz version of the Chain Rule comes in handy:

dy
dt

=
dy
dx
· dx

dt
We now investigate compositions involving multivariable functions.

The Chain Rule for Gradients

In Section 14.5 we stated the Chain Rule for Gradients, which involves
the composition of a function of one variable (on the “outside”) with a
multivariable function (on the “inside”).

Example 1. If F(t) =
√

t and g(x, y, z) = x2 + y2 + z2, let f (x, y, z) =
F (g(x, y, z)) and compute ∇ f (x, y, z).

Solution. We can write f (x, y, z) = F (g(x, y, z)) as:

f (x, y, z) = F(x2 + y2 + z2) =
√

x2 + y2 + z2 =
(

x2 + y2 + z2
) 1

2

and then compute the partial derivative of f with respect to x:

fx(x, y, z) =
1
2

(
x2 + y2 + z2

)− 1
2 · 2x =

x√
x2 + y2 + z2

The other partial derivatives are quite similar (see margin), so:

∇ f (x, y, z) =

〈
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

〉

which we can rewrite as: ∇ f (x, y, z) =
1√

x2 + y2 + z2
· 〈x, y, z〉. J

fy(x, y, z) =
y√

x2 + y2 + z2

fz(x, y, z) =
z√

x2 + y2 + z2

You might have noticed in the previous Example that F′(t) =
1

2
√

t
and that ∇g(x, y, z) = 〈2x, 2y, 2z〉 so that:

∇ [F(g(x, y, z)] = ∇ f (x, y, z) =
1√

x2 + y2 + z2
· 〈x, y, z〉

=
1

2
√

x2 + y2 + z2
· 〈2x, 2y, 2z〉

= F′(g(x, y, z)) · ∇g(x, y, z)

hence ∇ [F(g(x)] = F′(g(x)) · ∇g(x), a result you were asked to prove
in Problem 42 of Section 14.5.

The proof involves applying the one-
variable Chain Rule to compute each par-
tial derivative of F (g(x)).
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Chain Rule for Gradients: If F(t) is differentiable at t = g(a)
and g(x) is differentiable at x = a, then:

∇ [F(g(a)] = F′(g(a)) · ∇g(a)

Similar to the one-variable Chain Rule,
the Chain Rule for Gradients says that
the gradient of the composition F(g(x))
is “the derivative of the outside function,
evaluated at the inside function, times
the gradient of the inside function”; here
“times” indicates a dot product.

Example 2. If f (x, y) = sin
(

x3y + 7xy2), compute ∇ f (x, y).

Solution. Write F(t) = sin(t) and g(x, y) = x3y+ 7xy2 so that f (x, y) =
F(g(x, y)). Then F′(t) = cos(t) and∇g(x, y) =

〈
3x2y + 7y2, x3 + 14xy

〉
,

hence the Chain Rule for Gradients says:

∇ f (x, y) = F′(g(x, y)) · ∇g(x, y)

= cos
(

x3y + 7xy2
)
·
〈

3x2y + 7y2, x3 + 14xy
〉

You should check that you get the same answer by computing fx and
fy directly (without using the Chain Rule for Gradients). J

Practice 1. If ϕ(x, y, z) = arcsin (3x + 4y− 7z), compute ∇ϕ(x, y, z).

The Chain Rule for Paths

Imagine a bug crawling along the graph of z = f (x, y) = 100 + x3y2 in
such a way that the path of the bug on the “map” of the surface in the
xy-plane traces out an ellipsoid with x(t) = 3 cos(t) and y = 2 sin(t).
The actual path of the bug in R3 along with surface is a 3D curve with
x(t) = 3 cos(t), y(t) = 2 sin(t) and z(t) given by:

f (x(t), y(t)) = 100 + (x(t))3 (y(t))2 = 100 + (3 cos(t))3 (2 sin(t))2

The function z(t) gives the height of the bug above the xy-plane at
time t. If we want to know the rate of change of the bug’s height with
respect to time, we can differentiate z(t):

z′(t) = 3 (3 cos(t))2 (2 sin(t))2 [−3 sin(t)]+ 2 (3 cos(t))3 (2 sin(t)) [cos(t)]

But z(t) is the composition of f (x, y) = 100 + x3y2 and the functions
x(t) = 3 cos(t) and y = 2 sin(t). Noting that ∇ f (x, y) =

〈
3x2y2, 2x3y

〉
,

x′(t) = −3 sin(t) and y′(t) = 2 cos(t), we can rewrite z′(t) as:

z′(t) =
〈

3 [x(t)]2 [y(t)]2 , 2 [x(t)]3 · y(t)
〉
·
〈

x′(t), y′(t)
〉

= ∇ f (x(t), y(t)) ·
〈

x′(t), y′(t)
〉

This could be a coincidence, but in fact the pattern holds true in general.

Similar to the other Chain Rules, the
Chain Rule for Paths says the derivative
of the composition f (r(t)) is “the gradi-
ent of the outside function, evaluated at
the inside function, times the derivative
of the inside function.”

Chain Rule for Paths: If f (x) is differentiable at x = r(a) and
r(t) is differentiable at t = a, then:

ϕ(t) = f (r(t)) ⇒ ϕ′(a) = ∇ f (r(a)) · r′(a)
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Proof. To simplify the proof, assume that r(t) = 〈u(t), v(t)〉 is differ-
entiable at t = a and that f (x, y) is C1 on an open disk D centered at
(u(a), v(a)). Using the definition of the derivative:

ϕ′(a) = lim
h→0

ϕ(a + h)− ϕ(a)
h

= lim
h→0

f (u(a + h), v(a + h))− f (u(a), v(a))
h

By “adding 0,” we can rewrite the numerator as:

f (u(a + h), v(a + h))− f (u(a), v(a + h))

+ f (u(a), v(a + h))− f (u(a), v(a))

Applying the Mean Value Theorem to the first two terms:

f (u(a + h), v(a + h))− f (u(a), v(a + h))

= fx (c(h), v(a + h)) · [u(a + h)− u(a)]

for some number c(h) with u(a) < c(h) < u(a + h). Similarly, there is
a number γ(h) with v(a) < γ(h) < v(a + h) so that:

f (u(a), v(a + h))− f (u(a), v(a)) = fy (u(a), γ(h)) · [v(a + h)− v(a)]

Because fx, fy, u and v are continuous:

lim
h→0

fx (c(h), v(a + h)) · u(a + h)− u(a)
h

= fx (u(a), v(a)) · u′(a)

lim
h→0

fy (u(a), γ(h)) · v(a + h)− v(a)
h

= fy (u(a), v(a)) · v′(a)

so ϕ′(a) = ∇ f (u(a), v(a)) · 〈u′(a), v′(a)〉, as required.

Assuming f is C1 (rather than merely dif-
ferentiable) avoids some messy algebra
involving the definition of differentiabil-
ity. Generalizing the proof so that r(t)
can be a curve in Rn simply requires n
applications of the Mean Value Theorem
(rather than two) later in the proof.

Because h→ 0, we can assume h is small
enough that (u(a + h), v(a + h)) is in D.

We know fx and fy are continuous on D
because we assumed f was C1 there. We
know u and v are continuous at t = a
because they are differentiable there.

Example 3. Find the rate of change of f (x, y) = xy with respect to t
along the path r(t) = 〈cos(t), sin(t)〉 when t = π

3 .

Solution. r′(t) = 〈− sin(t), cos(t)〉 ⇒ r′
(

π
3
)
=
〈
−
√

3
2 , 1

2

〉
and∇ f (x, y) =

〈y, x〉 ⇒ ∇ f
(
r
(

π
3
))

= ∇ f
(√

3
2 , 1

2

)
=
〈

1
2 ,
√

3
2

〉
, so:

∇ f
(

r
(π

3

))
· r′
(π

3

)
=

〈
1
2

,

√
3

2

〉
·
〈
−
√

3
2

,
1
2

〉
= 0

according to the Chain Rule for Paths. J

Practice 2. Find the rate of change of f (x, y) = x4y3 + 3x2y with respect
to t along the path r(t) =

〈
t2 + t− 5, t3 − 2t2 − t + 4

〉
when t = 1.

If we write w = f (x, y) with x = u(t) and y = v(t), then the Chain
Rule for Paths says that: w′(t) = ∇ f (u(t), v(t)) · 〈u′(t), v′(t)〉, which
we can rewrite as:

w′(t) = fx(u(t), v(t)) · u′(t) + fy(u(t), v(t)) · v′(t)
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or, using Leibniz notation:
d f
dt

=
∂ f
∂x
· dx

dt
+

∂ f
∂y
· dy

dt
. And if f is a

function of three variables, we can write:

d f
dt

=
∂ f
∂x
· dx

dt
+

∂ f
∂y
· dy

dt
+

∂ f
∂z
· dz

dt

To help keep track of the correct pattern for the Leibniz version of
the Chain Rule, use a tree diagram (see margin): here w depends on
x, y and z, while x depends on t, y depends on t and z depends on t.
Then multiply the corresponding derivatives along each of the paths
and add the results.

Example 4. Find
d f
dt

for f (x, y, z) = xy+ z along the helix x(t) = cos(t),

y(t) = sin(t), z(t) = t when t = 0.

Solution. Computing the various derivatives,
∂ f
∂x

= y,
∂ f
∂y

= x,
∂ f
∂z

= 1,

dx
dt

= − sin(t),
dy
dt

= cos(t) and
dz
dt

= 1, so:

d f
dt

=
∂ f
∂x
· dx

dt
+

∂ f
∂y
· dy

dt
+

∂ f
∂z
· dz

dt
= (y) (− sin(t))+ (x) (cos(t))+ (1)(1)

If t = 0 then x(0) = 1, y(0) = 0 and z(0) = 0, hence
d f
dt

∣∣∣
t=0

=

(0)(0) + (1)(1) + (1)(1) = 2. J

Practice 3. Find
d f
dt

for the functions in Example 4 when t = π
3 .

Practice 4. In Example 4, if the units of t are seconds, the units of x, y
and z are meters and the units of f are ◦C, what are the units of f ′(t)?

More General Chain Rules

The Chain Rule for Paths lets you find the rate of change of a function
f (x, y) with respect to a variable t when x and y are each functions of t.
But what if x and y are functions of two (or more) variables?

If w = f (x, y), x = u(s, t) and y = v(s, t) then w is a function of s

and t, so you can compute both
∂w
∂s

and
∂w
∂t

by treating t (and then s)
as a constant and applying the Chain Rule for Paths:

∂w
∂s

=
∂w
∂x
· ∂x

∂s
+

∂w
∂y
· ∂y

∂s
∂w
∂t

=
∂w
∂x
· ∂x

∂t
+

∂w
∂y
· ∂y

∂t

Example 5. If w = f (x, y, z), x = ϕ(r, s), y = γ(r, s), and z = ψ(r),
with f , ϕ, γ and ψ all being differentiable, write valid Leibniz-style

chain rule expressions for
∂w
∂r

and
∂w
∂s

.
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Solution. Referring to the diagram in the margin, there are three paths
from w to r:

∂w
∂r

=
∂w
∂x
· ∂x

∂r
+

∂w
∂y
· ∂y

∂r
+

∂w
∂z
· ∂z

∂r

and two paths from w to s:

∂w
∂s

=
∂w
∂x
· ∂x

∂s
+

∂w
∂y
· ∂y

∂s

As before, drawing a diagram can help keep track of the correct pattern
for these more general versions of the multivariable chain rule. J

Practice 5. If T = f (x, y, z), x = ϕ(p, q, r), y = γ(p, q) and z = ψ(p, r),
with f , ϕ, γ and ψ all being differentiable, write valid Leibniz-style

chain rule expressions for
∂T
∂p

and
∂T
∂q

.

Example 6. The voltage V in a circuit satisfies Ohm’s Law, V = IR.

(a) Write a chain rule for expression for
dV
dt

.

(b) If the voltage V is dropping (because a battery is wearing out) and
the resistance R is increasing (because the circuit is heating up), at
what rate is the current I changing when R = 500 ohms, I = 0.04

amps,
dR
dt

= 0.5 ohms/sec and
dV
dt

= −0.01 volt/sec?

Solution. (a)
dV
dt

=
∂V
∂I
· ∂I

∂t
+

∂V
∂R
· ∂R

∂t

(b)
∂V
∂I

= R = 500 ohms and
∂V
∂R

= I = 0.04 amps so:

−0.01 = 500 · ∂I
∂t

+ (0.04)(0.5)

and solving this equation yields
∂I
∂t

= −0.00006
amps

sec
. J

14.6 Problems

In Problems 1–6, express
d f
dt

as a function of t, then
evaluate this derivative at the given value of t.

1. f (x, y) = x2 + y2, x = cos(t), y = sin(t), t = π

2. f (x, y) = x2y2 + 3x + 4y, x = t2, y = 1 + t, t = 2

3. f (x, y, z) = x2y + yz + xz, x = 3 + 2t, y = t2,
z = 5t, t = 2

4. f (x, y, z) =
x
y
+

y
z
+

z
x

, x = 1 + 2t, y = 2 + 3t,

z = 3 + 4t, t = 1

5. f (x, y, z) = 2yex − ln(z), x = ln
(
t2 + 1

)
, y =

arctan(t), z = et, t = 1

6. f (x, y, z) = xyz + 374, x = 2 cos(t), y = 2 sin(t),
z = 3t, t = π
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In Problems 7–8, use these values for ∂ f
∂x :

y 3 7 8 5 13

2 3 5 4 11

1 1 9 7 10

0 5 4 6 2

0 1 2 3 x

these values for ∂ f
∂y :

y 3 5 2 9 7

2 1 4 5 6

1 6 1 8 3

0 3 7 2 4

0 1 2 3 x
these values for x and y:

t 1 2 3 4

x 2 0 1 3

y 3 1 0 2

and these values for dx
dt and dy

dt :
t 1 2 3 4

dx
dt -1 5 -2 6

dy
dt -3 7 -1 8

7. Calculate
d f
dt

when t = 1 and t = 3.

8. Calculate
d f
dt

when t = 2 and t = 4.

9. If w = xy + yz + xz, x = u + v, y = u − v and

z = uv, express
∂w
∂u

and
∂w
∂v

as functions of u and

v, then evaluate each at the point (u, v) = (−2, 0).

10. If w = (x + y + z)2, x = r− s, y = cos(r + s) and

z = sin(r + s, find
∂w
∂r

at the point where r = 1
and s = −1.

11. If z = cos(x + y) + x · sin(y), x = u + v + 2 and

y = uv, find
∂z
∂u

at the point (u, v) = (0, 0).

12. The lengths a, b and c of the edges of a rectan-
gular box are changing. At one moment in time,
a = 1 m, b = 2 m, c = 3 m, da

dt = db
dt = 1 m

sec and
dc
dt = 3 m

sec . At this moment:

(a) At what rate is the box’s volume changing?

(b) At what rate is its surface area changing?

(c) Are its interior diagonals increasing or decreas-
ing in length?

13. In a certain ideal gas, the pressure P (in kilopas-
cals, kPa), the volume V (in liters, L) and the
temperature T (in ◦Kelvin, K) satisfy the equa-
tion PV = 8.31T. At what rate is the pressure
changing at the moment when the temperature is
310 ◦K and decreasing at a rate of 0.2

◦K
sec , and the

volume is 80 L and increasing at a rate of 0.1 L
sec?

14. You know: w is a function of x, y and z; x is func-
tion of r; y is a function of r and s; z is a function
of s and t; and s is a function of t. Use a tree

diagram to write a Chain Rule formula for
∂w
∂t

.

14.6 Practice Answers

1. ϕ(x, y, z) = arcsin (3x + 4y− 7z) = F (g(x, y, z)) where F(t) arcsin(t)
and g(x, y, z) = 3x + 4y− 7z, so differentiating yields:

F′(t) =
1√

1− t2
and ∇g(x, y, z) = 〈3, 4,−7〉

hence:

∇ϕ(x, y, z) = F′ (g(x, y, z)) · ∇g(x, y, z)

=
1√

1− (3x + 4y− 7z)2
〈3, 4,−7〉

=

〈
3√

1− (3x + 4y− 7z)2
,

4√
1− (3x + 4y− 7z)2

,
−7√

1− (3x + 4y− 7z)2

〉
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2. r(t) =
〈
t2 + t− 5, t3 − 2t2 − t + 4

〉
⇒ r′(t) =

〈
2t + 1, 3t2 − 4t− 1

〉
so r(1) = 〈−3, 2〉 and r′(1) = 〈3,−2〉 while f (x, y) = x4y3 + 3x2y⇒
∇ f (x, y) =

〈
4x3y3 + 6xy, 3x4y2 + 3x2〉⇒ ∇ f (3,−2) = 〈−900, 999〉:

d f
dt

∣∣∣
t=1

= ∇ f (r(1)) · r′(1) = ∇ f (3,−2) · r′(1) =

= 〈−900, 999〉 · 〈3,−2〉 = −4698

3. If t = π
3 then x(π

3 ) =
1
2 , y(π

3 ) =
√

3
2 and z(π

3 ) =
π
3 , hence:

d f
dt

∣∣∣
t= π

3

= (

√
3

2
)(−
√

3
2

) + (
1
2
)(

1
2
) + (1)(1) =

1
2

4.
◦C
m
· m

sec
+
◦C
m
· m

sec
+
◦C
m
· m

sec
=
◦C
sec

5. Referring the tree diagrams in the margin:

∂T
∂p

=
∂T
∂x
· ∂x

∂p
+

∂T
∂y
· ∂y

∂p
+

∂T
∂z
· ∂x

∂p
∂T
∂q

=
∂T
∂x
· ∂x

∂q
+

∂T
∂y
· ∂y

∂q

(Note that z does not depend on q.)
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