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2.8 Linear Approximation and Differentials

Newton’s method used tangent lines to “point toward” a root of a
function. In this section we examine and use another geometric charac-
teristic of tangent lines:

If f is differentiable at a, c is close to a
and y = L(x) is the line tangent to f (x) at x = a

then L(c) is close to f (c).

We can use this idea to approximate the values of some commonly
used functions and to predict the “error” or uncertainty in a compu-
tation if we know the “error” or uncertainty in our original data. At
the end of this section, we will define a related concept called the
differential of a function.

Linear Approximation

Because this section uses tangent lines extensively, it is worthwhile to
recall how we find the equation of the line tangent to f (x) where x = a:
the tangent line goes through the point (a, f (a)) and has slope f ′(a) so,
using the point-slope form y − y0 = m(x − x0) for linear equations, we
have y − f (a) = f ′(a) · (x − a) ⇒ y = f (a) + f ′(a) · (x − a).

If f is differentiable at x = a
then an equation of the line L tangent to f at x = a is:

L(x) = f (a) + f ′(a) · (x − a)

Example 1. Find a formula for L(x), the linear function tangent to the
graph of f (x) =

√
x at the point (9, 3). Evaluate L(9.1) and L(8.88) to

approximate
√

9.1 and
√

8.88.

Solution. f (x) =
√

x = x
1
2 ⇒ f ′(x) = 1

2 x−
1
2 = 1

2
√

x so f (9) = 3 and

f ′(9) = 1
2
√

9
= 1

6 . Thus:

L(x) = f (9) + f ′(9) · (x − 9) = 3 +
1
6
(x − 9)

If x is close to 9, then the value of L(x) should be a good approximation
of the value of x. The number 9.1 is close to 9 so

√
9.1 = f (9.1) ≈

L(9.1) = 3 + 1
6 (9.1 − 9) ≈ 3.016666. Similarly,

√
8.88 = f (8.88) ≈

L(8.88) = 3 + 1
6 (8.88 − 9) = 2.98. In fact,

√
9.1 ≈ 3.016621, so our

estimate using L(9.1) is within 0.000045 of the exact answer;
√

8.88 ≈
2.979933 (accurate to 6 decimal places) and our estimate is within
0.00007 of the exact answer. ◀
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In each case in the previous example, we got a good estimate of a
square root with very little work. The graph in the margin indicates
the graph of the tangent line y = L(x) lies slightly above the graph
of y = f (x); consequently (as we observed), each estimate is slightly
larger than the exact value.

Practice 1. Find a formula for L(x), the linear function tangent to the
graph of f (x) =

√
x at the point (16, 4). Evaluate L(16.1) and L(15.92)

to approximate
√

16.1 and
√

15.92. Are your approximations using L
larger or smaller than the exact values of the square roots?

Practice 2. Find a formula for L(x), the linear function tangent to the
graph of f (x) = x3 at the point (1, 1) and use L(x) to approximate
(1.02)3 and (0.97)3. Do you think your approximations using L are
larger or smaller than the exact values?

The process we have used to approximate square roots and cubics
can be used to approximate values of any differentiable function, and
the main result about the linear approximation follows from the two
statements in the boxes. Putting these two statements together, we have
the process for Linear Approximation.

Linear Approximation Process:

If f is differentiable at a and L(x) = f (a) + f ′(a) · (x − a)
then (geometrically) the graph of L(x) is close to the graph of

f (x) when x is close to a
and (algebraically) the values of the L(x) approximate the

values of f (x) when x is close to a:
f (x) ≈ L(x) = f (a) + f ′(a) · (x − a)

Sometimes we replace “x − a” with “∆x” in the last equation, and
the statement becomes f (x) ≈ f (a) + f ′(a) · ∆x.

Example 2. Use the linear approximation process to approximate the
value of e0.1.

Solution. f (x) = ex ⇒ f ′(x) = ex so we need to pick a value a near
x = 0.1 for which we know the exact value of f (a) = ea and f ′(a) = ea:
a = 0 is an obvious choice. Then:

e0.1 = f (0.1) ≈ L(0.1) = f (0) + f ′(0) · (0.1 − 0)

= e0 + e0 · (0.1) = 1 + 1 · (0.1) = 1.1

You can use your calculator to verify that this approximation is within
0.0052 of the exact value of e0.1. ◀
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Practice 3. Approximate the value of (1.06)4, the amount $1 becomes
after 4 years in a bank account paying 6% interest compounded annually.
(Take f (x) = x4 and a = 1.)

Practice 4. Use the linear approximation process and the values in the
table below to estimate the value of f when x = 1.1, 1.23 and 1.38.

x f (x) f ′(x)

1.0 0.7854 0.5
1.2 0.8761 0.4098
1.4 0.9505 0.3378

We can approximate functions as well as numbers (specific values of
those functions).

Example 3. Find a linear approximation formula L(x) for
√

1 + x when
x is small. Use your result to approximate

√
1.1 and

√
0.96.

Solution. f (x) =
√

1 + x = (1 + x)
1
2 ⇒ f ′(x) = 1

2 (1 + x)−
1
2 = 1

2
√

1+x
,

so because “x is small,” we know that x is close to 0 and we can pick
a = 0. Then f (a) = f (0) = 1 and f ′(a) = f ′(0) = 1

2 so

√
1 + x ≈ L(x) = f (0) + f ′(0) · (x − 0) = 1 +

1
2

x = 1 +
x
2

Taking x = 0.1,
√

1.1 =
√

1 + 0.1 ≈ 1 + 0.1
2 = 1.05; taking x = −0.04,√

0.96 =
√

1 + (−.04) ≈ 1 + −0.04
2 = 0.98. Use your calculator to

determine by how much each estimate differs from the true value. ◀

Applications of Linear Approximation to Measurement “Error”

Most scientific experiments use instruments to take measurements, but
these instruments are not perfect, and the measurements we get from
them are only accurate up to a certain level of precision. If we know
this level of accuracy of our instruments and measurements, we can
use the idea of linear approximation to estimate the level of accuracy
of results we calculate from our measurements.

If we measure the side x of a square to be 8 inches, then we would of
course calculate its area to be 82 = 64 square inches. Suppose, as would
reasonable with a real measurement, that our measuring instrument
could only measure or be read to the nearest 0.05 inches. Then our
measurement of 8 inches would really mean some number between
8− 0.05 = 7.95 inches and 8+ 0.05 = 8.05 inches, so the true area of the
square would be between 7.952 = 63.2025 and 8.052 = 64.8025 square
inches. Our possible “error” or “uncertainty,” because of the limitations
of the instrument, could be as much as 64.8025 − 64 = 0.8025 square
inches, so we could report the area of the square to be 64 ± 0.8025
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square inches. We can also use the linear approximation method to
estimate the “error” or uncertainty of the area. For a function as simple as the area of a

square, this linear approximation method
really isn’t needed, but it serves as a use-
ful and easily understood illustration of
the technique.

For a square with side x, the area is A(x) = x2 and A′(x) = 2x.
If ∆x represents the “error” or uncertainty of our measurement of
the side then, using the linear approximation technique for A(x),
A(x) ≈ A(a) + A′(a) · ∆x so the uncertainty of our calculated area is
A(x)− A(a) ≈ A′(a) · ∆x. In this example, a = 8 inches and ∆x = 0.05
inches, so A(8.05) ≈ A(8) + A′(8) · (0.05) = 64 + 2(8) · (0.05) = 64.8
square inches, and the uncertainty in our calculated area is approxi-
mately A(8 + 0.05)− A(8) ≈ A′(8) · ∆x = 2(8 inches)(0.05 inches) =
0.8 square inches. (Compare this approximation of the biggest pos-
sible error with the exact answer of 0.8025 square inches computed
previously.) This process can be summarized as:

Linear Approximation Error:

If the value of the x-variable is measured to be x = a with
a maximum “error” of ∆x units

then ∆ f , the “error” in estimating f (x), is:
∆ f = f (x)− f (a) ≈ f ′(a) · ∆x.

Practice 5. If we measure the side of a cube to be 4 cm with an uncer-
tainty of 0.1 cm, what is the volume of the cube and the uncertainty of
our calculation of the volume? (Use linear approximation.)

Example 4. We are using a tracking telescope to follow a small rocket.
Suppose we are 3,000 meters from the launch point of the rocket, and, 2

seconds after the launch we measure the angle of the inclination of the
rocket to be 64

◦ with a possible “error” of 2
◦. How high is the rocket

and what is the possible error in this calculated height?

Solution. Our measured angle is x = 1.1170 radians with ∆x = 0.0349
radians (all trigonometric work should be in radians), and the height of
the rocket at an angle x is f (x) = 3000 tan(x) so f (1.1170) ≈ 6151 m.
Our uncertainty in the height is ∆ f ≈ f ′(x) · ∆x ≈ 3000 · sec2(x) · ∆x =

3000 sec2(1.1170) · 0.0349 ≈ 545 m. If our measured angle of 64
◦ can be

in error by as much as 2
◦, then our calculated height of 6,151 m can be

in error by as much as 545 m. The height is 6151 ± 545 meters. ◀

Practice 6. Suppose we measured the angle of inclination in the pre-
vious Example to be 43◦ ± 1◦. Estimate the height of the rocket in the
form “height ± error.”

In some scientific and engineering applications, the calculated result
must be within some given specification. You might need to determine
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how accurate the initial measurements must be in order to guarantee
the final calculation is within that specification. Added precision usu-
ally costs time and money, so it is important to choose a measuring
instrument good enough for the job but which is not too expensive.

Example 5. Your company produces ball bearings (small metal spheres)
with a volume of 10 cm3 and the volume must be accurate to within 0.1
cm3. What radius should the bearings have — and what error can you
tolerate in the radius measurement to meet the accuracy specification
for the volume?

Solution. We want V = 10 and we know that the volume of a sphere
is V = 4

3 πr3, so solve 10 = 4
3 πr3 for r to get r = 1.3365 cm. V(r) =

4
3 πr3 ⇒ V′(r) = 4πr2 so ∆V ≈ V′(r) · ∆r. In this case we know that
∆V = 0.1 cm3 and we have calculated r = 1.3365 cm, so 0.1 cm3 =

V′(1.3365 cm) · ∆r = (22.45 cm2) · ∆r. Solving for ∆r, we get ∆r ≈
0.0045 cm. To meet the specification for allowable error in volume, we
must allow the radius to vary no more than 0.0045 cm. If we instead
measure the diameter of the sphere, then we want the diameter to be
d = 2r = 2(1.3365 ± 0.0045) = 2.673 ± 0.009 cm. ◀

Practice 7. You want to determine the height of a rocket to within 10

meters when it is 4,000 meters high (see margin figure). How accurate
must your angle of measurement be? (Do your calculations in radians.)

Relative Error and Percentage Error

The “error” we’ve been examining is called the absolute error to dis-
tinguish it from two other terms, the relative error and the percentage
error, which compare the absolute error with the magnitude of the
number being measured. An “error” of 6 inches in measuring the
Earth’s circumference would be extremely small, but a 6-inch error in
measuring your head for a hat would result in a very bad fit.

Definitions:

The Relative Error of f is
error of f
value of f

=
∆ f
f

The Percentage Error of f is
∆ f
f

· 100%.

Example 6. If the relative error in the calculation of the area of a circle
must be less than 0.4, then what relative error can we tolerate in the
measurement of the radius?
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Solution. A(r) = πr2 ⇒ A′(r) = 2πr and ∆A ≈ A′(r) · ∆r = 2πr∆r.
The Relative Error of A is:

∆A
A

≈ 2πr∆r
πr2 = 2

∆r
r

We can guarantee that the Relative Error of A,
∆A
A

, is less than 0.4 if

the Relative Error of r,
∆r
r

=
1
2

∆A
A

, is less than 1
2 (0.4) = 0.2. ◀

Practice 8. If you can measure the side of a cube with a percentage error
less than 3%, then what will the percentage error for your calculation
of the surface area of the cube be?

The Differential of f

As shown in the margin, the change in value of the function f near
the point (x, f (x)) is ∆ f = f (x + ∆x) − f (x) and the change along
the tangent line is f ′(x) · ∆x. If ∆x is small, then we have used the
approximation that ∆ f ≈ f ′(x) · ∆x. This leads to the definition of a
new quantity, d f , called the differential of f .

Definition:

The differential of f is d f = f ′(x) · dx where dx is any real number.

The differential of f represents the change in f , as x changes from
x to x + dx, along the tangent line to the graph of f at the point
(x, f (x)). If we take dx to be the number ∆x, then the differential is an
approximation of ∆ f : ∆ f ≈ f ′(x) · ∆x = f ′(x) · dx = d f .

Example 7. Determine the differential for the functions f (x) = x3 − 7x,
g(x) = sin(x) and h(r) = πr2.

Solution. d f = f ′(x) · dx = (3x2 − 7) dx, dg = g′(x) · dx = cos(x) dx,
and dh = h′(r) dr = 2πr dr. ◀

Practice 9. Determine the differentials of f (x) = ln(x), u =
√

1 − 3x
and r = 3 cos(θ).

While we will do very little with differen-
tials for a while, we will use them exten-
sively in integral calculus.

The Linear Approximation “Error” | f (x)− L(x)|

An approximation is most valuable if we also have have some measure
of the size of the “error,” the distance between the approximate value
and the value being approximated. Typically, we will not know the
exact value of the error (why not?), but it is useful to know an upper
bound for the error. For example, if one scale gives the weight of a gold
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pendant as 10.64 grams with an error less than 0.3 grams (10.64 ± 0.3
grams) and another scale gives the weight of the same pendant as 10.53

grams with an error less than 0.02 grams (10.53 ± 0.02 grams), then we
can have more faith in the second approximate weight because of the
smaller “error” guarantee. Before finding a guarantee on the size of the
error of the linear approximation process, we will check how well the
linear approximation process approximates values of some functions
we can compute exactly. Then we will prove one bound on the possible
error and state a somewhat stronger bound.

Example 8. Given the function f (x) = x2, evaluate the expressions
f (2 + ∆x), L(2 + ∆x) and | f (2 + ∆x)− L(2 + ∆x)| for ∆x = 0.1, 0.05,
0.01, 0.001 and for a general value of ∆x.

Solution. f (2+∆x) = (2+∆x)2 = 22 + 4∆x+(∆x)2 and L(2+∆x) =
f (2) + f ′(2) · ∆x = 22 + 4 · ∆x. Then:

∆x f (2 + ∆x) L(2 + ∆x) | f (2 + ∆x)− L(2 + ∆x)|

0.1 4.41 4.4 0.01
0.05 4.2025 4.2 0.0025
0.01 4.0401 4.04 0.0001
0.001 4.004001 4.004 0.000001

Cutting the value of ∆x in half makes the error one fourth as large.
Cutting ∆x to 1

10 as large makes the error 1
100 as large. In general:

| f (2 + ∆x)− L(2 + ∆x)| =
∣∣∣(22 + 4 · ∆x + (∆x)2

)
−
(

22 + 4 · ∆x
)∣∣∣

= (∆x)2

This function and error also have a nice geometric interpretation (see
margin): f (x) = x2 is the area of a square of side x so f (2 + ∆x) is
the area of a square of side 2 + ∆x, and that area is the sum of the
pieces with areas 22, 2 · ∆x, 2 · ∆x and (∆x)2. The linear approximation
L(2 + ∆x) = 22 + 4 · ∆x to the area of the square includes the three
largest pieces, 22, 2 · ∆x and 2 · ∆x, but omits the small square with area
(∆x)2 so the approximation is in error by the amount (∆x)2. ◀

Practice 10. Given f (x) = x3, evaluate f (4 + ∆x), L(4 + ∆x) and
| f (4 + ∆x)− L(4 + ∆x)| for ∆x = 0.1, 0.05, 0.01, 0.001 and for a general
value of ∆x. Use the margin figure to give a geometric interpretation of
f (4 + ∆x), L(4 + ∆x) and | f (4 + ∆x)− L(4 + ∆x)|.

In the previous Example and previous Practice problem, the error
| f (a + ∆x)− L(a + ∆x)| was very small, proportional to (∆x)2, when
∆x was small. In general, this error approaches 0 as ∆x → 0.
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Theorem:

If f (x) is differentiable at a
and L(a + ∆x) = f (a) + f ′(a) · ∆x

then lim
∆x→0

| f (a + ∆x)− L(a + ∆x)| = 0

and lim
∆x→0

| f (a + ∆x)− L(a + ∆x)|
∆x

= 0.

Proof. First rewrite the quantity inside the absolute value as:

f (a + ∆x)− L(a + ∆x) = f (a + ∆x)− f (a)− f ′(a) · ∆x

=

[
f (a + ∆x)− f (a)

∆x
− f ′(a)

]
· ∆x

But f is differentiable at x = a so lim
∆x→0

f (a + ∆x)− f (a)
∆x

= f ′(a),

which we can rewrite as lim
∆x→0

[
f (a + ∆x)− f (a)

∆x
− f ′(a)

]
= 0. Thus:

lim
∆x→0

[ f (a + ∆x)− L(a + ∆x)] = lim
∆x→0

[
f (a + ∆x)− f (a)

∆x
− f ′(a)

]
· lim

∆x→0
∆x = 0 · 0 = 0

Not only does the difference f (a + ∆x)− L(a + ∆x) approach 0, but
this difference approaches 0 so fast that we can divide it by ∆x, another
quantity approaching 0, and the quotient still approaches 0.

In the next chapter we will be able to prove that the error of the
linear approximation process is in fact proportional to (∆x)2. For now,
we just state the result.

Theorem:

If f is differentiable at a
and | f ′′(x)| ≤ M for all x between a and a + ∆x

then |“error”| = | f (a + ∆x)− L(a + ∆x)| ≤ 1
2 M · (∆x)2.

2.8 Problems

1. The figure in the margin shows the tangent line to a function g at
the point (2, 2) and a line segment ∆x units long.

(a) On the figure, label the locations of

i. 2 + ∆x on the x-axis

ii. the point (2 + ∆x, g(2 + ∆x))

iii. the point (2 + ∆x, g(2) + g′(2) · ∆x)

(b) How large is the “error,” (g(2) + g′(2) · ∆x)− (g(2 + ∆x))?
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2. In the figure below, is the linear approximation
L(a + ∆x) larger or smaller than the value of
f (a + ∆x) when:

(a) a = 1 and ∆x = 0.2?

(b) a = 2 and ∆x = −0.1?

(c) a = 3 and ∆x = 0.1?

(d) a = 4 and ∆x = 0.2?

(e) a = 4 and ∆x = −0.2?

In Problems 3–4, find a formula for the linear func-
tion L(x) tangent to the given function f at the given
point (a, f (a)). Use the value L(a + ∆x) to approxi-
mate the value of f (a + ∆x).

3. (a) f (x) =
√

x, a = 4, ∆x = 0.2

(b) f (x) =
√

x, a = 81, ∆x = −1

(c) f (x) = sin(x), a = 0, ∆x = 0.3

4. (a) f (x) = ln(x), a = 1, ∆x = 0.3

(b) f (x) = ex, a = 0, ∆x = 0.1

(c) f (x) = x5, a = 1, ∆x = 0.03

5. Show that (1 + x)n ≈ 1 + nx if x is “close to” 0.
(Suggestion: Put f (x) = (1 + x)n and a = 0 and
then replace ∆x with x.)

In 6–7, use the linear approximation process to ob-
tain each formula for x “close to” 0.

6. (a) (1 − x)n ≈ 1 − nx

(b) sin(x) ≈ x

(c) ex ≈ 1 + x

7. (a) ln(1 + x) ≈ x

(b) cos(x) ≈ 1

(c) tan(x) ≈ x

(d) sin
(

π
2 + x

)
≈ 1

8. The height of a triangle is exactly 4 inches, and the
base is measured to be 7±0.5 inches (see figure
below). Shade a part of the figure that represents
the “error” in the calculation of the area of the
triangle.

9. A rectangle has one side on the x-axis, one side on
the y-axis and a corner on the graph of y = x2 + 1
(see figure below).

(a) Use Linear Approximation of the area formula
to estimate the increase in the area of the rect-
angle if the base grows from 2 to 2.3 inches.

(b) Calculate exactly the increase in the area of
the rectangle as the base grows from 2 to 2.3
inches.
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10. You know that you can measure the diameter of
a circle to within 0.3 cm of the exact value.

(a) How large is the “error” in the calculated area
of a circle with a measured diameter of 7.4 cm?

(b) How large is the “error” with a measured di-
ameter of 13.6 cm?

(c) How large is the percentage error in the calcu-
lated area with a measured diameter of d?

11. You are minting gold coins that must have a vol-
ume of 47.3±0.1 cm3. If you can manufacture the
coins to be exactly 2 cm high, how much variation
can you allow for the radius?

12. If F is the fraction of carbon-14 remaining in
a plant sample Y years after it died, then Y =

5700 ln(0.5) · ln(F).

(a) Estimate the age of a plant sample in which
83±2% (0.83 ± 0.02) of the carbon-14 remains.

(b) Estimate the age of a plant sample in which
13±2% (0.13 ± 0.02) of the carbon-14 remains.

13. Your company is making dice (cubes) and speci-
fications require that their volume be 87±2 cm3.
How long should each side be and how much
variation can be allowed?

14. If the specifications require a cube with a surface
area of 43±0.2 cm2, how long should each side be
and how much variation can be allowed in order
to meet the specifications?

15. The period P, in seconds, for a pendulum to make
one complete swing and return to the release

point is P = 2π

√
L
g

where L is the length of the

pendulum in feet and g is 32 feet/sec2.

(a) If L = 2 feet, what is the period?
(b) If P = 1 second, how long is the pendulum?
(c) Estimate the change in P if L increases from 2

feet to 2.1 feet.
(d) The length of a 24-foot pendulum is increasing

2 inches per hour. Is the period getting longer
or shorter? How fast is the period changing?

16. A ball thrown at an angle θ (with the horizontal)
with an initial velocity v will land v2

g · sin(2θ) feet
from the thrower.

(a) How far away will the ball land if θ = π
4 and

v = 80 feet/second?

(b) Which will result in a greater change in the
distance: a 5% error in the angle θ or a 5%
error in the initial velocity v?

17. For the function graphed below, estimate the
value of d f when

(a) x = 2 and dx = 1

(b) x = 4 and dx = −1

(c) x = 3 and dx = 2

18. For the function graphed below, estimate the
value of d f when

(a) x = 1 and dx = 2

(b) x = 2 and dx = −1

(c) x = 3 and dx = 1

19. Calculate the differentials d f for the following
functions:

(a) f (x) = x2 − 3x

(b) f (x) = ex

(c) f (x) = sin(5x)

(d) f (x) = x3 + 2x with x = 1 and dx = 0.2

(e) f (x) = ln(x) with x = e and dx = −0.1

(f) f (x) =
√

2x + 5 with x = 22 and dx = 3.
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2.8 Practice Answers

1. f (x) = x
1
2 ⇒ f ′(x) = 1

2
√

x . At the point (16, 4) on the graph of f ,

the slope of the tangent line is f ′(16) = 1
2
√

16
= 1

8 . An equation of

the tangent line is y − 4 = 1
8 (x − 16) or y = 1

8 x + 2: L(x) = 1
8 x + 2.

So:
√

16.1 ≈ L(16.1) =
1
8
(16.1) + 2 = 4.0125

√
15.92 ≈ L(15.92) =

1
8
(15.92) + 2 = 3.99

2. f (x) = x3 ⇒ f ′(x) = 3x2. At (1, 1), the slope of the tangent line is
f ′(1) = 3. An equation of the tangent line is y − 1 = 3(x − 1) or
y = 3x − 2: L(x) = 3x − 2. So:

(1.02)3 ≈ L(1.02) = 3(1.02)− 2 = 1.06

(0.97)3 ≈ L(0.97) = 3(0.97)− 2 = 0.91

3. f (x) = x4 ⇒ f ′(x) = 4x3. Taking a = 1 and ∆x = 0.06:

(1.06)4 = f (1.06) ≈ L(1.06) = f (1) + f ′(1) · (0.06)

= 14 + 4(13)(0.06) = 1.24

4. Using values given in the table:

f (1.1) ≈ f (1) + f ′(1) · (0.1)

= 0.7854 + (0.5)(0.1) = 0.8354

f (1.23) ≈ f (1.2) + f ′(1.2) · (0.03)

= 0.8761 + (0.4098)(0.03) = 0.888394

f (1.38) ≈ f (1.4) + f ′(1.4) · (−0.02)

= 0.9505 + (0.3378)(−0.02) = 0.943744

5. f (x) = x3 ⇒ f ′(x) = 3x2 so f (4) = 43 = 64 cm3 and the “error” is:

∆ f ≈ f ′(x) · ∆x = 3x2 · ∆x

When x = 4 and ∆x = 0.1, ∆ f ≈ 3(4)2(0.1) = 4.8 cm3.

6. 43◦ ± 1◦ is equivalent to 0.75049 ± 0.01745 radians, so with f (x) =
3000 tan(x) we have f (0.75049) = 3000 tan(0.75049) ≈ 2797.5 m and
f ′(x) = 3000 sec2(x). So:

∆ f ≈ f ′(x) · ∆x = 3000 sec2(x) · ∆x

= 3000 sec2(0.75049) · (0.01745) = 97.9 m

The height of the rocket is 2797.5 ± 97.9 m.
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7. f (θ) = 2000 tan(θ) ⇒ f ′(θ) = 2000 sec2(θ) and we know f (θ) =

4000, so:

4000 = 2000 tan(θ) ⇒ tan(θ) = 2 ⇒ θ ≈ 1.10715 (radians)

and thus f ′(1.10715) = 2000 sec2(1.10715) ≈ 10000. Finally, the
“error” is given by ∆ f ≈ f ′(θ) · ∆θ so:

10 ≈ 10000 · ∆θ ⇒ ∆θ ≈ 10
10000

= 0.001 (radians) ≈ 0.057◦

8. A(r) = 6r2 ⇒ A′(r) = 12r ⇒ ∆A ≈ A′(r) · ∆r = 12r · ∆r and we
also know that ∆r

r < 0.03, so the percentage error is:

∆A
A

· 100% =
12r · ∆r

6r2 · 100% =
2∆r

r
· 100% < 200(0.03)% = 6%

9. Computing differentials:

d f = f ′(x) · dx =
1
x

dx

du =
du
dx

· dx =
−3

2
√

1 − 3x
dx

dr =
dr
dθ

dθ = −3 sin(θ) dθ

10. f (x) = x3 ⇒ f ′(x) = 3x2 so:

L(4 + ∆x) = f (4) + f ′(4)∆x = 43 + 3(4)2∆x = 64 + 48∆x

Evaluating the various quantities at the indicated points:

∆x f (4 + ∆x) L(4 + ∆x) | f (4 + ∆x)− L(4 + ∆x)|

0.1 68.921 68.8 0.121
0.05 66.430125 66.4 0.030125
0.01 64.481201 64.48 0.001201
0.001 64.048012 64.048 0.000012

f (4 + ∆x) is the actual volume of the cube with side length 4 + ∆x.
L(4 + ∆x) is the volume of the cube with side length 4 (V = 64) plus
the volume of the three “slabs” (V = 3 · 42 · ∆x).
| f (4 + ∆x)− L(4 + ∆x)| is the volume of the “leftover” pieces from
L: the three “rods” (V = 3 · 4 · (∆x)2) and the tiny cube (V = (∆x)3).
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