
16
Vector Calculus in 2D

So far during your journey through calculus you have worked exten-
sively with functions of a single variable, such as:

f (x) = x2 − 3x · sin(x)

that map a single-number input to a single-number output (in this case,
f (π) = π2). More recently, you have worked with functions of two (or
more) variables, such as:

g(x, y) = arctan(x + y)− x2 · y

that map a point in two (or higher)–dimensional space to a single-

number output (in this case, g(2,−1) =
π

4
+ 4). And you have studied

vector-valued functions of a single variable, such as:

r(t) =
〈

t, t2, t3
〉

that map a single-number input to a two- or three-dimensional vector.
We now turn your attention to functions that map a point in two-

(or three-) dimensional space to a vector in the same space. You have
already seen examples of this when you computed the gradient of a
multivariable function:

φ(x, y) = x2 · y3 ⇒ ∇φ(x, y) =
〈

2xy3, 3x2y2
〉

Although it may seem reasonable to call such a mapping a “multivari-
able vector-valued function,” we will instead call these relations vector
fields (due to tradition, as well as their usefulness when working with
electric, magnetic and gravitational fields in physics).

In this chapter, you will study two-dimensional vector fields, and in
the next chapter three-dimensional vector fields.
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16.1 Vector Fields in 2D

A vector field assigns a vector to each point in a domain, such as these
vectors showing wind velocities at sea level for Hurricane Katrina on
August 28 (below left) and August 29 (below right) in 2005:

From the U.S. Department of the Interior
publication "Modeling Waves and Cur-
rents Produced by Hurricanes Katrina,
Rita and Wilma" by Lie-Yauw Oey and
Dong-Ping Wang.

As indicated above, a vector field may vary over time. For the most
part, however, we will limit our study to steady-state vector fields,
which are time-independent. The vectors in the Katrina example are
velocities, but vectors in a vector field often represent forces.

Mathematically, we define a 2D vector field as a function with points
(x, y) in the plane as inputs and vectors as outputs, where the vector
components depend on the input point.

In mathematical typesetting, the vectors
F, i and j are typically rendered in bold
font, but when handwriting vectors, be
sure to use arrow notation (or “hat” no-
tation for unit vectors): F⃗, î, ĵ

Definition: A 2D vector field is a function F that assigns a 2D vector
F(x, y) to each point (x, y) in a subset D of the xy-plane. We write:

F(x, y) = ⟨P(x, y), Q(x, y)⟩ or F(x, y) = P(x, y)i + Q(x, y)j

We call P(x, y) and Q(x, y) the component functions of the vector
field F and D the domain of F. Most of the vector fields you will be see in

applications will have component func-
tions that are differentiable (and there-
fore continuous and defined) at all points
in the plane, or everywhere except one
point (usually the origin).

Example 1. Compute the values of F(x, y) = ⟨y,−x⟩ at the points (1, 0),
(1, 1), (0, 1), (−1, 1), (−1, 0) and (−1,−1).

Solution. Substituting the given x- and y-values: F(1, 0) = ⟨0,−1⟩,
F(1, 1) = ⟨1,−1⟩, F(0, 1) = ⟨1, 0⟩, F(−1, 1) = ⟨1, 1⟩, F(−1, 0) = ⟨0, 1⟩
and F(−1,−1) = ⟨−1, 1⟩. ◀

Practice 1. Compute the values of G(x, y) = ⟨1,−3⟩ and H(x, y) =

⟨x + y, x − y⟩ at the points (0, 0), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0),
(0,−1) and (−1,−1).

Graphing Vector Fields

The output of a vector field typically consists of an infinite number
of vectors (one for each point in a subset D of the xy-plane) so we
usually graph only a few of these vectors to make the pattern clear. By
convention, we put the tail of the F(x, y) vector at the point (x, y).
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Example 2. Plot the vectors of F(x, y) = ⟨y,−x⟩ at the points (1, 0),
(1, 1), (0, 1), (−1, 1), (−1, 0) and (−1,−1).

Solution. Using the results from Example 1 and plotting each output
vector with its tail at the input point yields the graph in the margin. ◀

x

y

Practice 2. Plot G(x, y) = ⟨1,−3⟩ and H(x, y) = ⟨x + y, x − y⟩ at the
points (0, 0), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (0,−1) and (−1,−1).

Graphing a few values of a vector field by hand can be instructive,
but quickly becomes very tedious. A number of web-based graphing
tools and computer programs do a very nice (and much faster) job.
Below are three plots of F(x, y) = ⟨y,−x⟩ from Example 2:
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The plot above left demonstrates the disadvantage of plotting too many
vectors, while the plot in the middle reveals that plotting fewer vectors
can still result in overlap, obscuring the overall pattern. The plot above
right “scales” the length of the vectors to avoid overlap. (You can think
of this as using different units, say cm/sec rather than mm/sec).

Here is a SageCell graph of F = ⟨y,−x⟩:

using the code:
var(’x,y’)

plot_vector_field((y,-x),

(x,-2,2),(y,-2,2),color="red")

Practice 3. Plot G(x, y) and H(x, y) from Practice 2 using technology.

Gradient Fields

A common example of a vector field with which you are already familiar
is a gradient field, the gradient of a function of two (or more) variables.

Example 3. Compute the gradient field for φ(x, y) = x2 + y2.

Solution. φx = 2x and φy = 2y so ∇φ(x, y) = ⟨2x, 2y⟩. A graph
appears in the margin. (This is an example of a radial vector field, with
all of the vectors pointing radially away from the origin.) ◀
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Practice 4. Compute (and graph) the gradient field for ψ(x, y) = xy.

If a vector field F(x, y) is the gradient of a function φ(x, y), we call φ

a potential function for F. (This term relates to potential energy, as we
will see later during our study of vector fields.)
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You may recall that gradient vectors of a function are normal (per-
pendicular) to the level curves of that function, as seen in the margin,
where the gradient field ⟨2x, 2y⟩ from Example 3 is graphed together
with level curves of the form x2 + y2 = k for k = 1

2 , 1, 3
2 and 2.

In the context of vector fields, we call these level curves the equipo-
tentials of the gradient field (because along these curves the potential
function is constant).
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Practice 5. Graph the gradient field for ψ(x, y) = xy along with some
of its equipotential curves.

Finding Potential Functions

Given a potential function, finding the associated gradient field is
straightforward. But if you suspect that a function is a gradient field,
how can you work backwards to find a potential function? Moving from
the potential function to the gradient involves partial differentiation,
so perhaps not surprisingly going in the opposite direction involves
“partial integration” (or “partial antidifferentiation”).

Example 4. Find a potential function φ(x, y) for F(x, y) = ⟨4y, 4x + 5⟩.

Solution. If ∇φ = F for some function φ then
〈

∂φ

∂x
,

∂φ

∂y

〉
= F so:

∂φ

∂x
= 4y ⇒ φ(x, y) = 4xy + g(y)

Why g(y) rather than a constant? Taking the partial derivative of g(y)
with respect to x yields 0 so adding any constant or any function of y
to φ will not change φx.

Taking the partial derivative of our new candidate for φ with respect
to y yields:

∂φ

∂y
=

∂

∂y
[4xy + g(y)] = 4x + g′(y)

On the other hand we need φy = 4x + 5 so equating these gives:

4x + g′(y) = 4x + 5 ⇒ g′(y) = 5 ⇒ g(y) = 5y + C

hence φ(x, y) = 4xy + 5y + C. Because we need a potential function
instead of the most general one, φ(x, y) = 4xy + 5y should work. ◀

We could have integrated first with re-
spect to y rather than x and ended up
with the same result. Try this.

Practice 6. Find a potential function for G(x, y) = ⟨y · exy + 2, x · exy + 3⟩.
Practice 7. Find a potential function for F(x, y) =

〈
2xy + cos(x), x2〉.

This is the field from Examples 1 and 2.Example 5. If possible, find a potential function for F(x, y) = ⟨y,−x⟩.

Solution. If F = ∇φ for some function φ then
〈

∂φ

∂x
,

∂φ

∂y

〉
= F so:

∂φ

∂x
= y ⇒ φ(x, y) = xy + g(y)

Differentiating our new candidate for φ with respect to y yields:

∂φ

∂y
=

∂

∂y
[xy + g(y)] = x + g′(y)

On the other hand we need φy = −x so equating these gives:

x + g′(y) = −x ⇒ g′(y) = −2x

but g′(y), being a function of y only, cannot depend on x, thus F has
no potential function: we conclude that F is not a gradient field. ◀

Example 5 shows that not all vector fields are gradient fields.
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Which Vector Fields Are Gradient Fields?

In general, if a vector field ⟨P(x, y), Q(x, y)⟩ is a gradient field then:

⟨P(x, y), Q(x, y)⟩ = ∇φ(x, y) =
〈

∂φ

∂x
,

∂φ

∂y

〉
for some function φ(x, y). In other words:

P =
∂φ

∂x
and Q =

∂φ

∂y

If these functions are all differentiable then:

∂P
∂y

=
∂2 φ

∂y∂x
and

∂Q
∂x

=
∂2 φ

∂x∂y

The Mixed-Partials Theorem tells us that if these two second-order
derivatives are continuous on some domain then they are equal on that
domain, hence:

∂Q
∂x

=
∂P
∂y

⇒ ∂Q
∂x

− ∂P
∂y

= 0

We often call this the mixed-partials condition for a vector field.

Theorem: If P(x, y) and Q(x, y) are C1 functions on a domain D
and ⟨P(x, y), Q(x, y)⟩ is a gradient field, then:

∂Q
∂x

=
∂P
∂y

⇒ ∂Q
∂x

− ∂P
∂y

= 0

Notice what this theorem does and does not say: If a field is a
gradient field, then the mixed-partials condition must be true; if the
mixed-partials condition holds then (at the moment) we can say nothing
about whether or not the field is a gradient field. We often make use of
the following corollary (the contrapositive of the theorem above):

Corollary: If P(x, y) and Q(x, y) are C1 functions on D and:

∂Q
∂x

− ∂P
∂y

̸= 0

then ⟨P, Q⟩ is not a gradient field.

Example 6. What does the mixed-partials condition tell you about the
vector fields F(x, y) = ⟨x, y⟩ and G(x, y) = ⟨y,−x⟩?

Solution. For F we have:

∂Q
∂x

− ∂P
∂y

=
∂

∂x
[y]− ∂

∂y
[x] = 0 − 0 = 0

so F might be a gradient field. For G:

∂Q
∂x

− ∂P
∂y

=
∂

∂x
[−x]− ∂

∂y
[y] = −1 − 1 = −2

so G is definitely not a gradient field. ◀

In fact, F is indeed a gradient field; you
can check that F = ∇φ where:

φ(x, y) =
1
2

x2 +
1
2

y2

Practice 8. What does the mixed-partials condition tell you about the
vector fields F(x, y) =

〈
5x3y4, 3x2y5〉 and G(x, y) =

〈
3x2y5, 5x3y4〉?
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Flow Lines

If a vector field F(x, y) = ⟨P(x, y), Q(x, y)⟩ represents the velocity of a
particle at the point (x, y), what path does this particle follow?

If the particle’s position is given by r(t) = ⟨x(t), y(t)⟩ at time t, then
its velocity at that time is r′(t) = ⟨x′(t), y′(t)⟩. But we want this velocity
to agree with the field vector at that point, so that:

r′(t) = F(x(t), y(t)) ⇒
〈

x′(t), y′(t)
〉
= ⟨P(x(t), y(t)), Q(x(t), y(t))⟩

In other words, we need:
dx
dt

= P(x(t), y(t)) and
dy
dt

= Q(x(t), y(t))

This is a system of first-order differential equations, which in practice
can be challenging (or even impossible) to solve. In a few special cases,
however, we may be able to solve the system and determine the possible
paths of the particle, which we call the flow lines of the vector field. In spite of this terminology, flow lines are

most often curves, rather than lines.
Example 7. Find and graph the flow lines of F(x, y) = ⟨2x, 2y⟩.

Solution. A parameter representation of the flow lines must satisfy:

dx
dt

= 2x and
dy
dt

= 2y

so that x = Ae2t and y = Be2t for arbitrary constants A and B. We can
rewrite this as:

r(t) =
〈

Ae2t, Be2t
〉
= e2t ⟨A, B⟩

which shows that the flow lines are rays emanating from the origin,
with the particles moving along those rays travelling at exponentially
increasing speed. The graph in the margin shows F along with its
flow lines (solid rays, with arrows indicating the direction of flow) and
equipotential curves (dashed circles). ◀
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Note in the graph accompanying Example 7 that the flow lines and
the equipotential curves meet at right angles. (This is true for all
gradient fields because the vectors of a gradient field are perpendicular
to the level curves of the potential function.)

Example 8. Find and graph the flow lines of G(x, y) = ⟨y,−x⟩.

Solution. A parameter representation of the flow lines must satisfy:

dx
dt

= y and
dy
dt

= −x ⇒ dy
dx

=
dy
dt
dx
dt

= − x
y

Solving this separable ODE yields:

dy
dx

= − x
y

⇒ y dy = −x dx ⇒ 1
2

y2 = −1
2

x2 + C

or (with K = 2C) x2 + y2 = K, which are circles centered at the origin.
The graph in the margin shows G(x, y) = ⟨y,−x⟩ together with several
of its flow lines. (We know from Example 6 that ⟨y,−x⟩ is not a gradient
field, so it does not have equipotential curves.) ◀ −2 −1 0 1 2
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Practice 9. Find the flow lines for F(x, y) = ⟨x, 0⟩ and G(x, y) = ⟨0, x⟩.
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16.1 Problems

In Problems 1–8, sketch a few vectors from the given
vector field by hand, then use technology to create a
more robust graphical representation.

1. ⟨2, 1⟩ 2. ⟨1, x⟩

3. ⟨x, x⟩ 4. ⟨y, y⟩

5.
〈

x2, y
〉

6. ⟨1, xy⟩

7. ⟨x,−y⟩ 8. ⟨y, 1 − x⟩

In Problems 9–14, find a formula for a vector field
with vectors satisfying the given properties.

9. Have length exactly 2 and point in the positive
x-direction.

10. Have length at least 2 and point in the negative
y-direction.

11. Point toward the origin.

12. Have length 1 and point toward the origin.

13. Have length 1 and point away from the origin.

14. Are tangent to a circle centered at the origin.

In Problems 15–18, find the gradient field associated
with the given function, then graph that vector field
along with some level curves for the function.

15. φ(x, y) = xy2 − x2y

16. ψ(x, y) =
x
y

17. f (x, y) = x3 + y3

18. g(x, y) = x · sin(y) + exy

In Problems 19–24, find a potential function for the
given vector field, or show that the given vector field
does not have a potential function.

19. F(x, y) =
〈
3x2 + 4, 6

〉
20. G(x, y) =

〈
2

2x + 3y
,

3
2x + 3y

+ 6y2
〉

21. H(x, y) =
〈
y · cos(xy) + x2y, x · cos(xy) + x3〉

22. F(x, y) =
〈

xy3 + 3x2y, 3xy2 + x2〉
23. G(x, y) = ⟨sin(y), x · cos(y)⟩
24. H(x, y) =

〈
5x4y4 + 7y, 4x5y−7x

〉
In Problems 25–30, find parametric representations
of the flow lines for the given vector field.

25. F(x, y) = ⟨3,−2⟩ 26. G(x, y) = ⟨x,−2⟩

27. H(x, y) = ⟨y, 1⟩ 28. F(x, y) = ⟨y, 2y⟩

29. G(x, y) = ⟨y,−x⟩ 30. H(x, y) = ⟨y, x⟩

16.1 Practice Answers

1. Substituting the given x- and y-values: G(0, 0) = ⟨1,−3⟩ = G(1, 0) =
G(1, 1) = G(0, 1) = G(−1, 1) = G(−1, 0) = G(0,−1) = G(−1,−1)
while H(0, 0) = ⟨0, 0⟩, H(1, 0) = ⟨1, 1⟩, H(1, 1) = ⟨2, 0⟩, H(0, 1) =

⟨1,−1⟩, H(−1, 1) = ⟨0,−2⟩, H(−1, 0) = ⟨−1,−1⟩, H(1,−1) =

⟨−1, 1⟩ and H(−1,−1) = ⟨−2, 0⟩.

x

y

2. See the margin figure for G(x, y) and below for H(x, y):

x

y

H(0, 0) = ⟨0, 0⟩ is not visible.
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3. A SageMathCell graph of G(x, y) appears in the margin and a graph
of H(x, y) appears below:

4. ∇ψ(x, y) = ⟨y, x⟩. A graph appears in the margin.

5. A graph appears below:
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6. If ∇φ = G for some φ then:

∂φ

∂x
= y · exy + 2 ⇒ φ(x, y) = exy + 2x + g(y)

Differentiating this φ with respect to y yields:

∂φ

∂y
=

∂

∂y
[exy + 2x + g(y)] = x · exy + g′(y)

On the other hand we need φy = x · exy + 3 so equating these gives:

x · exy + g′(y) = x · exy + 3 ⇒ g′(y) = 3 ⇒ g(y) = 3y + C

hence φ(x, y) = exy + 2x + 3y works.

7. If ∇φ = F for some φ then:

∂φ

∂x
= 2xy + cos(x) ⇒ φ(x, y) = x2y + sin(x) + g(y)

Differentiating this φ with respect to y yields:

∂φ

∂y
=

∂

∂y

[
x2y + sin(x) + g(y)

]
= x2 + g′(y)

On the other hand we need φy = x2 so equating these gives:

x2 + g′(y) = x · x2 ⇒ g′(y) = 0 ⇒ g(y) = C

hence φ(x, y) = x2y + sin(x) works.

8. For F(x, y), with P(x, y) = 5x3y4 and Q(x, y) = 3x2y5:

∂Q
∂x

− ∂P
∂y

=
∂

∂x

[
3x2y5

]
− ∂

∂y

[
5x3y4

]
= 6xy5 − 20x3y3 ̸= 0

so F is definitely not a gradient field. For G(x, y) =
〈
3x2y5, 5x3y4〉:

∂Q
∂x

− ∂P
∂y

=
∂

∂x

[
5x3y4

]
− ∂

∂y

[
3x2y5

]
= 15x2y4 − 15x2y4 = 0

so G might be a gradient field. In fact, ∇φ = G where φ(x, y) = x3y5.

9. A parameter representation of the flow lines for F(x, y) = ⟨x, 0⟩ must
satisfy:

dx
dt

= x and
dy
dt

= 0

so that x = Aet and y = B for arbitrary constants A and B, hence the
flow lines are horizontal half-lines, with the particles moving along
those lines travelling to the right (or left, if A < 0) at exponentially
increasing speed.

A parameter representation of the flow lines for G(x, y) = ⟨0, x⟩
must satisfy:

dx
dt

= 0 and
dy
dt

= x

so that x = A, hence y′ = A ⇒ y = At + B for arbitrary constants
A and B: the flow lines are vertical lines, with the particles moving
along those lines travelling at linear speed.
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16.2 Flux

Throughout this section (and the ones that follow) imagine, if you will,
a thin layer of water (or some other substance) with uniform (and very
shallow) depth, flowing along a very flat surface (such as a newly paved
road) so that the velocity of a very small leaf floating on the water will
be given by a vector field F at any point (x, y).

One of the simplest such situations would involve a constant velocity
field, say ⟨5, 0⟩, which might represent water flowing in the positive
x-direction at a speed of 5 cm per second (as shown in the margin).
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If you position a string of length 7 cm above the surface and per-
pendicular to the velocity field (as shown below left), how much water
flows underneath the string during the course of one second?
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Assuming the water has constant depth (say, 1 cm), the volume of water
that flows under the string in one second would be 7 · 5 · 1 cm3. Because
we are operating (for now) with 2D vector fields and assuming that the
stream has a very shallow (and uniform) depth, we will define the flux
of the vector field past this string as “area per unit of time.” In this
situation the flux is: 7 · 5 = 35 cm2/sec (as shown above right).

The word “flux” is a fancy synonym for
“flow,” from the Latin word “fluxus,” the
past participle of the Latin word “fluere”
(meaning “to flow”), from which we also
get the word “fluent.”

Example 1. Compute the flux of the vector field ⟨c, 0⟩ under a string of
length h positioned perpendicular to the vector field.

Solution. In one time unit, the amount of “stuff” flowing under the
string equals c · h, the area of a rectangle of base c and height h. ◀

Practice 1. Compute the flux of the vector field ⟨π, 0⟩ under a string of
length e parallel to the x-axis.
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8Now consider what would happen if, instead of the water (or “stuff”)
flowing from left to right, it flowed from right to left (as in the margin
figure). Would the flux still be positive? Or would the flux be negative?

From now on, we will pick a “positive direction of flow” for each
line under which our “stuff” flows and define the flux to be positive
if the “stuff” is flowing in the direction defined to be positive, and
negative if the “stuff” is flowing in the opposite direction.

Oriented Curves

In our first examples, our “stuff” was flowing from left to right, which
we assumed was the positive direction of flow, but for more general
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vector fields and line segments (and, eventually, curves) we need to be
more precise. We call a curve oriented if we define a direction of travel
from one endpoint to the other. We typically draw an arrow on the line
(or curve) pointing in this direction, as shown below:

By convention, we define the positive direction of flow (or flux) to be
to the right (90◦ counterclockwise from the direction of motion) as we
travel along the curve, as shown here:

If a vector-valued function r(t) traces out
a curve without doubling back on itself
(so that r(t1) ̸= r(t2) if t1 ̸= t2) then
this parameterization defines a natural
orientation for the curve. For example,
r(t) = ⟨cos(t), sin(t)⟩ for 0 ≤ t ≤ 2π
traces out the unit circle in the positive
(counterclockwise) direction:

−1 0 1
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1

If you want to orient this curve in the op-
posite (negative, or clockwise) direction
you can adjust the parameterization. For
the unit circle, replacing t with −t yields
r(t) = ⟨cos(t),− sin(t)⟩ for 0 ≤ t ≤ 2π:

−1 0 1

−1
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1Example 2. Find the unit normal vector n for the line segment starting
at (0, 0) and ending at (3, 4).

Solution. A direction vector for the line segment is ⟨3, 4⟩. Both ⟨4,−3⟩
and ⟨−4, 3⟩ are normal (perpendicular) to the line’s direction vector, but
only ⟨4,−3⟩ points to the right when facing the direction of orientation

for the line. Hence n =

〈
4
5

,−3
5

〉
is the unit normal vector. ◀

Practice 2. Find the unit normal vector n for the line segment starting
at (11, 7) and ending at (2, 7).

Example 3. Find the unit normal vector n for the curve C parameterized
by r(t) =

〈
t2, 2t − t3〉 for 0 ≤ t ≤ 2, at the point where t = 1.

Solution. For any t, r′(t) =
〈
2t, 2 − 3t2〉 is tangent to C, so at t = 1,

r′(1) = ⟨2,−1⟩ is tangent to C, hence ⟨−1,−2⟩ will be normal to the
curve, pointing rightward when facing the direction of motion. Thus

n =

〈
− 1√

5
,− 2√

5

〉
is the desired unit normal vector (see margin). ◀

0 1 2 3 4

−4

−3

−2

−1

0

1

Practice 3. Find the unit normal vector n for the curve C from Example
3 at the point where t = 1.5.

In general, for any curve parameterized by r(t) = ⟨x(t), y(t)⟩, the
vector r′(t) = ⟨x′(t), y′(t)⟩ will be tangent to the curve, and:

T(t) =
r′(t)

∥r′(t)∥ =

〈
x′(t)√

[x′(t)]2 + [y′(t)]2
,

y′(t)√
[x′(t)]2 + [y′(t)]2

〉
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will be the unit tangent vector at the point corresponding to time t,
while the unit normal vector (pointing to the right when facing the
direction of T(t)) will be:

n(t) =

〈
y′(t)√

[x′(t)]2 + [y′(t)]2
,

−x′(t)√
[x′(t)]2 + [y′(t)]2

〉
This T is the same unit tangent vector we
encountered when studying TNB frames
for curves, while n is either N or −N:
the N from the TNB frame points in the
direction a curve is “turning,” while n
always points to the right.

Practice 4. Compute the flux of the vector field ⟨3, 0⟩ across the oriented
line segment starting at (2, 5) and ending at (2, 1).

Flux Computations

So far in our flux computations, the velocity vectors have been perpen-
dicular to the line. What if this is not the case?

0 2 4

0

2

4

Example 4. Compute the flux of the vector field ⟨5, 1⟩ under a string
extending from (0, 0) to (0, 3) (see margin for graph).

Solution. In one unit of time, the amount of “stuff” that flows under
the string is equal to the area of the parallelogram formed by the vectors
⟨5, 1⟩ and ⟨0, 3⟩, as shown below left:

0 2 4

0

2

4

0 2 4

0

2

4

This area is the same at the rectangle shown above right, which has
base 5 and height 3, so the flux is 5 · 3 = 15. ◀

Can you see why the areas are equal?

Another way to view the computation in Example 4 is to think of the
height of the rectangle as ∥L∥ = ∥⟨0, 3⟩∥ = 3 (where L is the oriented
line segment) and the base of the rectangle as:

F · n = ⟨5, 1⟩ · ⟨1, 0⟩

the projection of the field vectors F onto the unit normal vector for L.
In general, given a constant vector field F and an oriented line

segment L, we can define the flux of F across L to be:

(F · n) ∥L∥

where n is the unit normal vector for L

Practice 5. Compute the flux of F = ⟨−11, 17⟩ across the oriented line
segment extending from (1, 1) to (5, 9).
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If we write F = ⟨P, Q⟩ and L = ⟨∆x, ∆y⟩ then:

(F · n) ∥L∥ =

⟨P, Q⟩ · ⟨∆y,−∆x⟩√
(∆y)2 + (−∆x)2

√
(∆x)2 + (∆y)2

which simplifies to:

(F · n) ∥L∥ = ⟨P, Q⟩ · ⟨∆y,−∆x⟩ = P ∆y − Q ∆x

We can now use this simpler formula to compute flux.

For now, P and Q are constants.

Example 5. Compute the flux of F = ⟨−11, 17⟩ across the oriented line
segment extending from (1, 1) to (5, 9).

Solution. ∆x = 4 and ∆y = 8, so flux = −11 · 8 − 17 · 4 = −156 . ◀ Does this agree with Practice 5?

Practice 6. Compute the flux of F = ⟨−2, 3⟩ across the oriented line
segment extending from (2, 1) to (7, 1).

0 2 4

0

2

4

Example 6. Compute the flux of F = ⟨1 + y, 0⟩ across the oriented line
segment extending from (0, 0) to (0, 4).

Solution. We cannot use our shortcut formulas here, because F is not
constant. A graph (see margin) indicates that the flux should equal the
area of the shaded trapezoid, which is:

(1 + 5)
2

· 4 = 3 · 4 = 12

We could also compute this area (and hence the flux) using an integral:

� y=4

y=0
(1 + y) dy =

[
y +

1
2

y2
]y=4

y=0
= 4 +

1
2
· 16 = 12

which agrees with the area of the trapezoid. ◀

Practice 7. Compute the flux of F = ⟨0, 2 + x⟩ across the oriented line
segment extending from (0, 0) to (7, 0).

1 2 3

−1

0

1

2

Example 7. Compute the flux of F =
〈
0, 8 − 11x + 6x2 − x3〉 across the

oriented line segment extending from (1, 0) to (3, 0).

Solution. We cannot use geometry here but a graph (see margin) in-
dicates the flux should correspond to the area of the shaded region,
which is:

� x=3

x=1
(8 − 11x + 6x2 − x3) dx =

[
8x − 11

2
x2 + 2x3 − 1

4
x4
]3

1
= 4

so the flux is −4 (with the negative sign due to the unit normal vector
pointing in the opposite direction of the field vectors). ◀

Practice 8. Compute the flux of F = ⟨0, 2 + cos(x)⟩ across the oriented
line segment extending from (0, 0) to (2π, 0).
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In Example 6, the vector field had the form ⟨P(y), 0⟩ and the oriented
line segment pointed in the positive y-direction, while in Example 7

the vector field had the form ⟨0, Q(x)⟩ and the oriented line segment
pointed in the positive x-direction. The integrals we used to compute
flux were, respectively, of the form:�

P dy and −
�

Q dx

This resembles the P ∆y − Q ∆x formula for constant vector fields. Might these integral formulas general-
ize to other situations? What happens
if our oriented line segment becomes an
oriented curve?Flux Across Curves

Consider a general situation where r(t) = ⟨x(t), y(t)⟩ for a ≤ t ≤ b
parameterizes an oriented curve C and F = ⟨P(x, y), Q(x, y)⟩ is a vector
field defined on some open set containing C. How might we compute
the flux of F across C?

We know how to compute flux when the curve C is a line segment
and F is constant (and have even computed flux for some special
cases where F is not constant). To work out a method for the most
general case, we follow a pattern you have seen over and over again in
calculus: chop the curve C into many small pieces, each of which can
be approximated by a line segment.

Choose a partition {t0, t1, t2, . . . , tn} of the interval [a, b] so that t0 = a
and tn = b. We will assume here that r(t) traces out the curve C from
one end (where t = a) to the other (where t = b) without reversing
direction, and that C does not cross itself (in other words r(c) ̸= r(γ)
unless c = γ), in which case we call C a simple curve, with the possible
exception that r(a) = r(b), in which case we call C a closed curve.

Here we need r(t) to be differentiable.
We call a curve that has a differentiable
paramterization smooth. From now on
in this chapter, we will tacitly assume
that all curves are smooth, or at least
piecewise smooth, in other words a finite
union of smooth curves.

Here we need r′(t) ̸= 0 for all t ∈ [a, b].
We call such a parameterization regular.

This is because:∥∥〈y′(tk),−x′(tk)
〉∥∥ =

√
(y′(tk))

2 + (−x′(tk))
2

while:∥∥〈x′(tk), y′(tk)
〉∥∥ =

√
(x′(tk))

2 + (y′(tk))
2

so that:∥∥〈y′(tk),−x′(tk)
〉∥∥ =

∥∥〈x′(tk), y′(tk)
〉∥∥

If n is suitably large, and each subinterval [tk, tk+1] of our partition
is suitably small, then the portion of C corresponding to [tk, tk+1] will
not be too different from the line segment joining its endpoints, which
will correspond to the vector r (tk+1)− r (tk) = ∆rk ≈ r′(tk) · ∆tk. The
flux across the k-th piece of C is approximately:

(F (r(tk)) · n(tk))
∥∥r′(tk) · ∆tk

∥∥
Expanding the first part in terms of the component functions P and Q:

F · n = ⟨P (x(tk), y(tk)) , Q (x(tk), y(tk))⟩ ·
⟨y′(tk),−x′(tk)⟩

∥⟨y′(tk),−x′(tk)⟩∥
while the second part becomes:∥∥r′(tk) · ∆tk

∥∥ =
∥∥〈x′(tk), y′(tk)

〉∥∥ ∆tk

but ∥⟨y′(tk),−x′(tk)⟩∥ and ∥⟨x′(tk), y′(tk)⟩∥ cancel, yielding:[
P (x(tk), y(tk)) ·

dy
dt

(tk)− Q (x(tk), y(tk)) ·
dx
dt

(tk)

]
∆tk

Adding up these approximate fluxes for all pieces of the partition yields
a Riemann sum that converges to this definite integral:

� t=b

t=a

[
P(x, y) · dy

dt
− Q(x, y) · dx

dt

]
dt
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which we often write more succinctly (in differential form) as:
�
C
[P dy − Q dx]

Example 8. Compute the flux of F(x, y) = ⟨0.9, 0.7⟩ across C, the
portion of the parabola y = x2 extending from (1, 1) to (3, 9).

Solution. Parameterizing C with r(t) =
〈
t, t2〉 for 1 ≤ t ≤ 3, we have

r′(t) = ⟨1, 2t⟩ so the flux of F across C is:
� t=3

t=1
[0.9 · 2t − 0.7 · 1] dt =

[
0.9t2 − 0.7t

]3

1
= 5.8

Notice in the margin figure that the angles between the field vectors
and the normal vectors to the curve appear to be acute, resulting in
positive dot products, hence a positive total flux.

Another approach (which works with similar computations where
the curve C is a graph of the form y = f (x) or x = g(y)) is to write
y = x2 ⇒ dy = 2x dx and compute:
�
C
[P dy − Q dx] =

� x=3

x=1
[0.9 · 2x dx − 0.7 · dx] =

� 3

1
[1.8x − 0.7] dx

which also yields an answer of 5.8. ◀

This should remind you of the formula:

P ∆y − Q∆x

we use when P and Q are constant and
C is a line segment.

1 2 3 4

1

2

3

4

5

6

7

8

9

Practice 9. Compute the flux of the vector field G(x, y) =
〈

x3, y2〉
across the curve K given by the graph of y = x2 + 1 for −1 ≤ x ≤ 1
(oriented in the direction of increasing x).

Example 9. Compute the flux of the vector field F(x, y) = ⟨x, y⟩ across
C, the upper half of the semicircle x2 + y2 = 9 oriented in the positive
(counterclockwise) direction.

Solution. With r(t) = ⟨3 cos(t), 3 sin(t)⟩ for 0 ≤ t ≤ π parmaterizing
C, we have r′(t) = ⟨−3 sin(t), 3 cos(t)⟩ so the flux of F across C is:
� t=π

t=0
[3 cos(t) · 3 cos(t) − 3 sin(t) · (−3 sin(t))] dt =

� π

0
9 dt = 9π

Notice in the margin figure that the field vectors point radially outward,
as do the normal vectors for the semicircle. ◀

−3 −2 −1 0 1 2 3
0

1

2

3

4

Practice 10. Compute the flux of the vector field G(x, y) = ⟨y,−x⟩
across the upper half of the unit circle, oriented positively.

You might recall that for a curve parmameterized by r(t) the ar-
clength from t = a to an arbitrary point on the curve is:

s(t) =
� t

a

∥∥r′(τ)
∥∥ dτ ⇒ ds

dt
=

∥∥r′(t)
∥∥ ⇒ ds =

∥∥r′(t)
∥∥ dt

This last quantity turned up in our development of the integral for-
mula(s) for flux. Replacing ∥r′(t)∥ dt with ds, the arclength element,
we can write the flux formula in yet another way:

�
C

F · n ds
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which we interpret as “the integral of the normal component of F along
C with respect to arclength.”

In Example 9, at any point on the semicircle n =
〈 x

3
,

y
3

〉
so that:

F · n = ⟨x, y⟩ ·
〈 x

3
,

y
3

〉
=

1
3

(
x2 + y2

)
=

1
3
· 9 = 3

(using the fact that everywhere on the semicircle x2 + y2 = 9) so that:
�
C

F · n ds =
�
C

3 ds = 3 · 3π = 9π

because the arclength of the semicircle is 3π, yielding the same answer
as in our original solution to Example 9.

Here we have made use of geometry to
avoid parameterizing the curve (or the
need to work out an antiderivtarive).

16.2 Problems

In Problems 1–14, compute the flux of the given
vector field F across the specified oriented curve C.

1. F = ⟨5, 12⟩, C the line segment from (3, 2) to (3, 7)

2. F = ⟨5, 12⟩, C the line segment from (3, 2) to (8, 2)

3. F = ⟨5, 12⟩, C the line segment from (8, 2) to (3, 2)

4. F = ⟨5, 12⟩, C the line segment from (3, 7) to (3, 2)

5. F = ⟨−7, 10⟩, C is the portion of the parabola
y = 3 + x + x2 from (0, 3) to (2, 9)

6. F = ⟨8, 11⟩, C is the portion of the parabola
x = 1 + 2y + y2 from (0,−1) to (4, 1)

7. F = ⟨2x, 3y⟩, C is the portion of the parabola
x = 2 + y + y2 from (4,−2) to (4, 1)

8. F = ⟨2y, 3x⟩, C is the portion of the parabola
y = 2 − x2 from (−1, 1) to (1, 1)

9. F = ⟨−y, x⟩, C is the curve parameterized by
r(t) = ⟨cos(t), sin(t)⟩ for 0 ≤ t ≤ π

2

10. F = ⟨−y, x⟩, C is the curve parameterized by
r(t) =

〈
cos

(
π
2 t
)

, sin
(

π
2 t
)〉

for 0 ≤ t ≤ π
2

11. F =
〈
2xy2, 2x2y

〉
, C is the curve parameterized

by r(t) =
〈
t2, t3〉 for 1 ≤ t ≤ 3

12. F = ⟨3x, 5y⟩, C is the unit circle, with positive
(counterclockwise) orientation

13. F = ∇φ where φ(x, y) = x3y + 4xy2, C is the line
segment from (0, 0) to (2, 4)

14. F = ∇φ where φ(x, y) = x3y+ 4xy2, C is the part
of the parabola y = x2 from (0, 0) to (2, 4)

In Problems 15–22, evaluate each flux integral over
the specified curve.

15. C is the line segment from (−2,−2) to (3, 3):
�
C
[5 dy − 3 dx]

16. C is the line segment from (−2,−2) to (3, 3):
�
C
[7 dy − 5 dx]

17. C is the line segment from (−2,−2) to (3, 3):
�
C
[7 dy + 5 dx]

18. C is the line segment from (−1,−2) to (3, 6):
�
C
[5 dy + 9 dx]

19. C is the line segment from (0, 0) to (4, 7):
�
C
[x dy − y dx]

20. C is the line segment from (0, 0) to (3,−6):
�
C
[y dy − x dx]

21. C is the portion of the parabola the portion of the
parabola y = x2 + 7 from (−1, 8) to (1, 8):

�
C

[
x2 dy − y2 dx

]
22. C is the portion of the parabola the portion of the

curve y = 5 − x3 from (−2, 13) to (2, 0):
�
C

[
xy2 dy − x2y dx

]



contemporary vector calculus 1617

23. Compute the flux of the vector field ⟨2, 5⟩ along
the line segment from (0, 0) to (3, 6) using:

(a) r1(t) = ⟨3t, 6t⟩ for 0 ≤ t ≤ 1

(b) r2(t) =
〈
3t2, 6t2〉 for 0 ≤ t ≤ 1

and verify that each results in the same answer.

24. Compute the flux of the vector field ⟨2, 5⟩ along
the line segment from:

(a) (0, 0) to (3, 6)

(b) (3, 6) to (0, 0)

and interpret these results geometrically.

16.2 Practice Answers

1. Using the result of Example 1: π · e

2. A direction vector for the line segment is ⟨−9, 0⟩. Both ⟨0, 1⟩ and
⟨0,−1⟩ are normal to the this direction vector, but only ⟨0, 1⟩ points
to the right when facing the direction of orientation for the line
segment, hence n = ⟨0, 1⟩ is the unit normal vector:

2 3 4 5 6 7 8 9 10 11

7

8

3. r′(t) =
〈
2t, 2 − 3t2〉, so r′(1.5) = ⟨3,−4.75⟩ is tangent to C, hence

⟨−4.75, 3⟩ will be normal to the curve, pointing rightward when
facing the direction of motion. Because |⟨−4.75, 3⟩| =

√
31.5625,

n =

〈
− 4.75√

31.5625
,

3√
31.5625

〉
≈ ⟨−0.845, 0.534⟩ (see margin).

0 1 2 3 4

−4

−3

−2

−1

0

1

4. A direction vector for the line segment is ⟨0,−4⟩, so n = ⟨−1, 0⟩ is
the unit normal vector, which points in the opposite direction of the
field vectors, hence the flux is −4 · 3 = −12.

5. L = ⟨4, 8⟩ so n =
⟨8,−4⟩√

82 + (−4)2
=

〈
2√
5

,− 1√
5

〉
and:

F · n (|L|) = ⟨−11, 17⟩ · ⟨8,−4⟩√
82 + (−4)2

(√
42 + 82

)
= ⟨−11, 17⟩ · ⟨8,−4⟩ = −88 − 68 = −156

6. P∆y − Q∆x = −2 · 0 + 3 · 5 = 15

7. A graph (see margin) indicates that the flux should equal the area of
the shaded trapezoid, which is:

(2 + 9)
2

· 7 = 5.5 · 7 = 38.5

We could also compute this area (and flux) using an integral:

� x=7

x=0
(2 + x) dx =

[
2x +

1
2

x2
]x=7

x=0
= 14 +

1
2
· 49 = 38.5

1 3 5 7

1

3

5

7

9
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8. A graph (see margin) indicates that the flux should equal (negative)
the area of the shaded region:

−
� x=2π

x=0
(2 + cos(x)) dx = − [2x + sin(x)]x=2π

x=0 = −4π

0 π
2

π 3π
2

2π

−1

0

1

2

3

with the negative sign due to the field vectors pointing in the opposite
direction of the unit normal vector for the oriented line segment.
(You can also determine this flux without integrating — how?)

9. Parameterizing K with r(t) =
〈
t, t2 + 1

〉
for −1 ≤ t ≤ 1, we have

r′(t) = ⟨1, 2t⟩ so the flux of G across K is:

� t=1

t=−1

[
t3 · 2t −

(
t2 + 1

)2
· 1

]
dt

which becomes:
� t=1

t=−1

[
t4 − 2t2 − 1

]
dt =

[
1
5

t5 − 2
3

t3 − t
]t=1

t=−1
= −44

15

Notice (see margin) that the angles between the field vectors and the
normal vectors generally appear to be obtuse, resulting in negative
dot products, hence a negative total flux. You could also write:

�
K
[P dy − Q dx] =

� x=1

x=−1

[
x3 dy − y2 · dx

]
=

� 3

−1

[
x3 · 2x dx −

(
x2 + 1

)2
]

dx

which yields the same numerical result.

−1 0 1

1

2

10. With r(t) = ⟨3 cos(t), 3 sin(t)⟩ for 0 ≤ t ≤ π parmaterizing the
semicircle, as in Example 9, r′(t) = ⟨−3 sin(t), 3 cos(t)⟩ so the flux
of G across the curve is:
� t=π

t=0
[3 sin(t) · 3 cos(t) − (−3 cos(t)) (−3 sin(t))] dt =

� π

0
0 dt = 0

Notice (see margin) that the field vectors are tangent to the semicircle,
while the normal vectors are (by definition) normal to semicircle,
and hence to the field vectors, resulting in dot products of 0. −3 −2 −1 0 1 2 3

0

1

2

3

4



contemporary vector calculus 1619

16.3 Divergence

In this section we continue to think of vector fields as velocity fields
of a thin layer of water (or “stuff”) flowing along a very flat surface,
and compute the net flux of the “stuff” flowing through a closed curve,
such as a rectangle or circle. By default we assume such curves have a
positive (counterclockwise) orientation so that the corresponding unit
normal vector at any point on the curve points away from (or out of) the
region enclosed by the curve (as shown in the margin).

Example 1. Compute the total flux of the vector field F = ⟨3, 0⟩ through
the rectangle shown in the margin, with base length b and height h.

Solution. Consider the flux of F across each of the four sides of the
rectangle separately. The flux of ⟨3, 0⟩ across the bottom of the rectangle
is 0 because F · n = ⟨3, 0⟩ · ⟨0,−1⟩ = 0 there, and likewise the flux is
0 across the top because F · n = ⟨3, 0⟩ · ⟨0, 1⟩ = 0 on that part of the
rectangle. The flux across the right side of the rectangle is:

(⟨3, 0⟩ · ⟨1, 0⟩) (h) = 3h

while the flux across the left side is:

(⟨3, 0⟩ · ⟨−1, 0⟩) (h) = −3h

so the total flux across the rectangle is 0 + 3h + 0 − 3h = 0. ◀ The amount of “stuff” flowing into the
rectangle per unit of time equals the
amount flowing out per unit of time.

Practice 1. Compute the total flux of the vector field G = ⟨0, 4⟩ through
the rectangle from Example 1.

Less “stuff” is flowing into the rectangle
on the left than is flowing out on the right
(and nothing is flowing through the top
of bottom), so you might well predict that
the net (outward) flux is positive. How
can this happen in our shallow stream
example? Imagine a steady rainfall that
adds water to the stream as it flows from
left to right. (If the next flux were nega-
tive, we could imagine an array of small
drains at the bottom of the stream.)

Example 2. Compute the total outward flux of F(x, y) = ⟨1 + 0.2x, 0⟩
through the rectangle R with opposing vertices at (0, 0) and (6, 3).

Solution. Consider the flux of F across each of the four sides of the
rectangle separately. Along the bottom of the rectangle:

F = ⟨1 + 0.2x, 0⟩ · ⟨0,−1⟩ = 0

so the flux across the bottom is 0 and along the top:

F = ⟨1 + 0.2x, 0⟩ · ⟨0, 1⟩ = 0
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so the flux is likewise 0 there. Along the left side, x = 0 so that:

F(0, y) = ⟨1 + 0.2(0), 0⟩ = ⟨1, 0⟩ ⇒ F · n = ⟨1, 0⟩ · ⟨−1, 0⟩ = −1

and hence the flux across the left side is (−1)(3) = −3. Along the right
side, x = 6 so that:

F(6, y) = ⟨1 + 0.2(6), 0⟩ = ⟨2.2, 0⟩ ⇒ F · n = ⟨2.2, 0⟩ · ⟨1, 0⟩ = 2.2

hence the flux across the right side is (2.2)(3) = 6.6 and the total flux
across R is 0 + 6.6 + 0 − 3 = 3.6. ◀ The net flux is positive, as predicted.

Practice 2. Compute the total flux of G(x, y) = ⟨0, 3 − 0.5y⟩ through
the rectangle from Example 1.

If we rework Example 2 with a more generic vector field F(x, y) =
⟨c + mx, 0⟩ and a more generic rectangle with opposing vertices at (0, 0)
and (b, h), the net flux turns out to be:

(⟨c, 0⟩ · ⟨−1, 0⟩) h + (⟨c + mb, 0⟩ · ⟨1, 0⟩) h = −ch + (c + mb)h = mbh

Likewise, the flux of G(x, y) = ⟨0, k + ny⟩ across the same rectangle is:

(⟨0, k⟩ · ⟨0,−1⟩) b + (⟨0, k + nh⟩ · ⟨0, 1⟩) b = −kb + (k + nh)b = nbh

so the flux of ⟨c + mx, k + ny⟩ across the rectangle is:

mbh + nbh = (m + n)bh = (m + n)(area of rectangle)

Can we generalize this further? Is there anything special about a
rectangle or our choice of coordinate system?

Net Flux Across a Circle

(𝑎,𝑏)
ℎ

Let Ch be the circle of radius h centered at the point (a, b), oriented posi-
tively. To find the net flux of the vector field F(x, y) = ⟨P(x, y), Q(x, y)⟩
across this (closed) circle we need to compute:

�
Ch

F · n ds

If we parameterize the circle using r(t) = ⟨a + h cos(t), b + h sin(t)⟩,
then an (outward) unit normal vector is n(t) = ⟨cos(t), sin(t)⟩ and the
arclength element is ds = ∥r′(t)∥ dt = h dt so the integral becomes:

�
Ch

F · n ds =
� 2π

0
F (a + h cos(t), b + h sin(t)) · ⟨h cos(t), h sin(t)⟩ dt

For small values of h > 0, the point (x, y) will be close to (a, b), so we
can approximate the component functions of the vector field using:

These are the linearizations of P and Q.
P(x, y) ≈ P(a, b) + Px(a, b) · (x − a) + Py(a, b) · (y − b)

Q(x, y) ≈ Q(a, b) + Qx(a, b) · (x − a) + Qy(a, b) · (y − b)
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Putting x = a + h cos(t) and y = b + h sin(t) this becomes:

P(a + h cos(t), b + h sin(t)) ≈ P(a, b) + Px(a, b) · h cos(t) + Py(a, b) · h sin(t)

Q(a + h cos(t), b + h sin(t)) ≈ Q(a, b) + Qx(a, b) · h cos(t) + Qy(a, b) · h sin(t)

so that F (a + h cos(t), b + h sin(t)) · ⟨h cos(t), h sin(t)⟩ is (approximately):

P(a, b) · h cos(t) + Px(a, b) · h2 cos2(t) + Py(a, b) · h2 sin(t) cos(t)

+ Q(a, b) · h sin(t) + Qx(a, b) · h2 cos(t) sin(t) + Qy(a, b) · h2 sin2(t)

Integrating this quantity from 0 to 2π yields:
�
Ch

F · n ds ≈ πh2 [Px(a, b) + Qy(a, b)
]

This tells us that the total flux across the circle is equal to the area
enclosed by the circle times the expression Px(a, b) + Qy(a, b), which
we now define to be the divergence of F at the point (a, b), writing:

div(F)
∣∣∣
(a,b)

= Px(a, b) + Qy(a, b) = lim
h→0+

1
πh2 ·

�
Ch

F · n ds

For a circle of small radius, we can interpret the divergence as “flux per
unit of area.” Might this interpretation extend to other regions?

Here we use these facts:
� 2π

0
cos(t) dt =

� 2π

0
sin(t) dt = 0

� 2π

0
sin(t) cos(t) dt = 0

� 2π

0
cos2(t) dt =

� 2π

0
sin2(t) dt = π

Computing Divergence

Finding the divergence of a vector field is one of the most straightfor-
ward computations you will encounter in vector calculus:

div (⟨P(x, y), Q(x, y)⟩) = ∂P
∂x

+
∂Q
∂y

Simply compute the x-derivative of the x-component and the y-derivative
of the y-component, then add them together.

Example 3. Compute the divergence of the vector fields F(x, y) = ⟨3, 4⟩,
G(x, y) = ⟨3 − 2x, 4 + 7y⟩ and B(x, y) =

〈
x2y5, x3y

〉
.

Solution. div (F) = ∂x(3) + ∂y(4) = 0 + 0 = 0, while:

div (G) =
∂

∂x
(3 − 2x) +

∂

∂x
(4 + 7y) = −2 + 7 = 5

and div (B) = ∂x(x2y5) + ∂y(x3y) = 2xy5 + x3. ◀

Practice 3. Compute the divergence of F(x, y) =
〈
π2, e3〉, G(x, y) =

⟨13 + 2x − 6y, 14 + 8x − 7y⟩ and B(x, y) = ⟨x · cos(xy), x · sin(xy)⟩.

Interpreting Divergence

For a circle C of small radius, we know that the divergence of a vector
field F near C is (approximately) the net flux of F across C divided by
the area enclosed by C.

In the discussion following Practice 2, we saw that the flux of
⟨c + mx, k + ny⟩, which has divergence m + n, across a rectangle is
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(m + n)(area of rectangle), so that here too the divergence of the vector
field equals the net flux of the vector field across the rectangle, divided
by the area of the rectangle. Furthermore, we can show that any vec-
tor field of the form F(x, y) = ⟨c + mx + µy, k + νx + ny⟩ (with linear
component functions) and any curve C that is a circle or rectangle:

See Problem 25.

flux of F across C = div(F) · (area enclosed by C)

If C is a circle or rectangle with sufficiently small dimensions centered
at (a, b) and, more generally, F = ⟨P, Q⟩ has continuously differen-
tiable component functions near (a, b) (so that div (F) = Px + Qy is
continuous on a region containing C) then div(F)(x, y) will be close to
div(F)(a, b) on this region and:

flux of F across C ≈ div(F)(a, b) · (area enclosed by C)

Because any area is always positive, this tells us that the divergence of
F at (a, b) and the flux of F across a circle of small radius centered at
(a, b) must have the same sign.

We are assuming here that these rectan-
gles have sides parallel to the coordinate
axes, although we will shall soon see that
the assertion is true for any rectangle.

If the net flux is positive, then “stuff’ is
“diverging” from the small circle, hence
the term “divergence.”

0.9 1 1.1

0.9

1

1.1

Example 4. Compute the divergence of F(x, y) =
〈

x2, y2〉 at (1, 1),
(1,−1) and (−1, 0), then interpret these values with the aid of a graph.

Solution. div (F) (x, y) = ∂x(x2)+ ∂y(y2) = 2x+ 2y ⇒ div (F) (1, 1) =
4, div (F) (1,−1) = 0 and div (F) (−1, 0) = −2. A graph of

〈
x2, y2〉

together a small circle centered at (1, 1) (see margin) reveals that near
(1, 1) there appears to be more “stuff” flowing out of the circle than
flowing in, which corresponds to the fact that div (F) (1, 1) > 0.

Similarly, near (1,−1) there seems to be about the same amount of
“stuff” flowing in and out of the circle (see graph below left), which
corresponds to the fact that div (F) (1,−1) = 0.

0.9 1 1.1

−1.1

−1

−0.9

−1.1 −1 −0.9

−0.1

0

0.1

And near (−1, 0) (above right) there appears to be more “stuff” flowing
in than out, which agrees with the fact that div (F) (−1, 0) < 0. ◀

Practice 4. If G(x, y) =
〈

x2, 2y
〉
, compute div (G) at (1, 0), (−1.5, 0)

and (−1, 0), then interpret these values with the aid of a graph.
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16.3 Problems

In Problems 1–12, compute the divergence of the
given vector field.

1. F(x, y) = ⟨x, y⟩ 2. G(x, y) = ⟨y,−x⟩
3. F(x, y) = ⟨−y, x⟩ 4. G(x, y) = ⟨4, 9⟩
5. F(x, y) = ⟨−1 + 3x, 7 − 4y⟩
6. G(x, y) =

〈
−1 + 3x2, 7 − 4y2〉

7. F(x, y) = ⟨−1 + 3y, 7 − 4x⟩
8. G(x, y) =

〈
−1 + 3y2, 7 − 4x2〉

9. F(x, y) =
〈
2 − x3, π4 + y5〉

10. G(x, y) = ⟨sin(xy), cos(xy)⟩
11. F(x, y) =

〈
x3y2 + arctan(y), x2y3 − ln(x2 + 10)

〉
12. G(x, y) =

〈
(x + y)5 , (x − y)5

〉
In Problems 13–18, compute the divergence of the
given vector field and evaluate it at the given points.

13. F =
〈

x2 + 3y, 2y + x
〉

at (1, 1), (2,−1) and (1, 3)

14. G =
〈

xy2, x2y + 3
〉

at (3, 2), (0, 3) and (1, 4)

15. F = ⟨5x − 3y, x + 2y⟩ at (3, 2), (0, 3) and (1, 4)

16. G =
〈

x2 − y2, x2 + y2〉 at (2, 3), (−2, 2) and (3, 1)

17. F = ⟨−3y, x · y⟩ at (3, 2), (0, 3) and (1, 4)

18. G =
〈
e3, π2〉 at (2, 3), (−2, 2) and (3, 1)

In Problems 19–24, estimate whether the divergence
of the vector field at the indicated point is positive,
negative or approximately zero.

19.

1 2 3

1

2

3

20.

1 2 3

1

2

3

21.

1 2 3

1

2

3

22.

1 2 3

1

2

3
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23.

1 2 3

1

2

3

24.

1 2 3

1

2

3

25. Show that, for constants a, b, c, α, β and γ, and
the vector field:

F(x, y) = ⟨c + ax + by, γ + αx + βy⟩

the flux of F across any rectangle R (with sides
parallel to the coordinate axes) equals:

div(F) · (area enclosed by R)

What must be true about the constants a, b, c, α,
β and γ if the flux equals 0?

In 26–30, compute the divergence of the vector field,
assuming f , g, φ and ψ are all differentiable.

26. F(x, y) = ⟨ f (x), g(y)⟩
27. G(x, y) = ⟨φ(y), ψ(x)⟩
28. F(x, y) = ⟨ f (x) · φ(y), g(x) · ψ(y)⟩

29. G(x, y) = ⟨ f (x) + φ(y), g(x) + ψ(y)⟩
30. G(x, y) = ⟨ f (x + y), g(x − y)⟩

In Problems 31–36, a few vectors of a vector field F
are shown near a point P. In each problem, draw
additional vectors so that:

(a) div (F) (P) > 0

(b) div (F) (P) < 0

(c) div (F) (P) ≈ 0

31.

𝑃

32.

𝑃

33.

𝑃

34.

𝑃

35.

𝑃

36.

𝑃

37. Given a vector field F(x, y) = ⟨P(x, y), Q(x, y)⟩
and a circle C with center A = (a, b) and small
radius, consider what would happen if you im-
posed a different coordinate system (u, v). Would
the value of the divergence of the vector field at
A change? What about the value of the flux of
the vector field across the circle?

38. Given a vector field F(x, y) = ⟨P(x, y), Q(x, y)⟩
and a circle C with center A = (a, b) and small
radius, consider what would happen if you mea-
sured distances in mm instead of cm. How would
the value of the divergence of the vector field at
A change? What about the value of the flux of
the vector field across the circle?
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16.3 Practice Answers

1. On the right side of the rectangle G · n = ⟨0, 4⟩ · ⟨1, 0⟩ = 0 and on
the left side G · n = ⟨0, 4⟩ · ⟨−1, 0⟩ = 0, so the flux through these
sides is each 0. On the top side G · n = ⟨0, 4⟩ · ⟨0, 1⟩ = 4 so the flux
is 4b and on the bottom side G · n = ⟨0, 4⟩ · ⟨0,−1⟩ = −4 so the flux
is −4b. The net flux is 0 + 4b + 0 − 4b = 0.

2. On the right side G · n = ⟨0, 3 − 0.5y⟩ · ⟨1, 0⟩ = 0 and on the left
G · n = ⟨0, 3 − 0.5y⟩ · ⟨−1, 0⟩ = 0, so the flux through each of these
sides is 0. If the bottom of the rectangle is at y = β then the top is
at y = β + h so on the top side G · n = ⟨0, 3 − 0.5 (β + h)⟩ · ⟨0, 1⟩ =
3 − 0.5 (β + h), hence the flux is (3 − 0.5 (β + h)) b. Finally, on the
bottom G · n = ⟨0, 3 − 0.5β⟩ · ⟨0,−1⟩ = − (3 − 0.5β) so the flux is
− (3 − 0.5β) b, yielding a total net flux of:

0 + (3 − 0.5 (β + h)) b + 0 − (3 − 0.5β) b = −0.5bh

3. div (F) = 0 + 0 = 0, div (G) = 2 − 7 = −5 and:

div (B) = −xy sin(xy) + cos(xy) + x2 cos(xy)

=
(

1 + x2
)

cos(xy)− xy sin(xy)

4. div (G) = 2x + 2 so div (G)(1, 0) = 4 > 0, div (G)(−1.5, 0) = −1 <

0 and div (G)(−1, 0) = 0. These signs agree with the behavior of
G(x, y) near each of these points:

0.9 1 1.1

−0.1

0

0.1

−2.1 −2 −1.9

1.9

2

2.1

−1.6 −1.5 −1.4

−0.1

0

0.1
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16.4 2D Divergence Theorem

We have seen that, for a vector field with linear component functions
(hence constant divergence), the net flux of that vector field across a
circle or certain rectangles was equal to the divergence of the vector
field times the area enclosed by the rectangle or circle. In other words,
for vector fields F(x, y) = ⟨P(x, y), Q(x, y)⟩ with constant divergence
and certain closed (oriented) curves C with interior region R:

flux of F across C = div(F) · (area of R)

or, writing the area as a double integral:
�
C
[P dy − Q dx] =

[
∂P
∂x

+
∂Q
∂y

]
·
�

R
1 dA

Moving the (constant) divergence inside the integral, this becomes:
�
C
[P dy − Q dx] =

�
R

[
∂P
∂x

+
∂Q
∂y

]
dA

Might this hold true for more general vector fields (even ones without
constant divergence)? Might it hold for more general curves? Let’s
investigate by considering a specific example.

Our goal is to extend this result to more
general vector fields over more general
2D regions R with (closed, oriented)
boundary curves C, such as this one:

𝒞=𝜕ℛℛ

We will often use the notation ∂R for the
boundary curve of the region R. (There
is a reason for this. Stay tuned.)

6 7

2

3

4

5

Example 1. Compute the flux of F(x, y) =
〈

x2, y2〉 across the rectangle
with opposing vertices at (1, 2) and (7, 5) with positive (counterclock-
wise) orientation, then integrate div(F) over the region in the xy-plane
with this rectangle as its boundary.

Solution. To compute the flux of F across the rectangle, we will com-
pute the flux across each of its four sides separately:

1 2 3 4 5 6 7

2

3

4

5

On the right side of the rectangle (see margin), where x = 7 (so that
dx = 0), the flux is:

� y=5

y=2

[
72 dy − y2 · 0

]
= 49 · 3 = 147

On the left side of the rectangle, where x = 1 ⇒ dx = 0, the flux is:

� y=2

y=5

[
12 dy − y2 · 0

]
= −3
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On the bottom of the rectangle, where y = 2 ⇒ dy = 0, the flux is:

� x=7

x=1

[
x2 · 0 − 22 dx

]
= −24

And on the top of the rectangle, where y = 5 ⇒ dy = 0, the flux is:

� x=1

x=7

[
x2 · 0 − 52 dx

]
= 25 · 5 = 150

Summing this up, the total flux is 147 − 3 − 24 + 150 = 270.

1 2 3 4 5 6 7

2

3

1 2 3 4 5 6 7

4

5

On the other hand, div(F) = 2x + 2y, so integrating this over the
rectangular region yields:

� y=5

y=2

� x=7

x=1
[2x + 2y] dx dy =

� y=5

y=2

[
x2 + 2xy

]x=7

x=1
dy

=

� y=5

y=2
[48 + 12y] dy =

[
48y + 6y2

]y=5

y=2
= 270

It worked! This does not prove that the result holds for all vector fields
(or all regions), but our hypothesis remains a possibility. ◀

Practice 1. Find the flux of G(x, y) =
〈

xy, x2y
〉

across the (positively
oriented) rectangle with opposing vertices at (−2,−1) and (4, 3), then
integrate div(G) over the region with this rectangle as its boundary.

a b

c

d

Notice that these integrals are iterated dif-
ferently, so that we can more easily find
a “partial antiderivative” in each case.

a b

c

d

Consider now a generic vector field F(x, y) = ⟨P(x, y), Q(x, y)⟩ and
a more generic rectangular region R bounded by the lines x = a, x = b,
y = c and y = d (see margin). We want to show that:

�
∂R

[P dy − Q dx] =
�

R

[
∂P
∂x

+
∂Q
∂y

]
dA

where ∂R is the (closed, positively oriented) boundary curve (a rectan-
gle) for the rectangular region R. Starting with the double integral on
the right side of this equality and splitting it in two we get:

� y=d

y=c

[� x=b

x=a

∂P
∂x

dx

]
dy +

� x=b

x=a

[� y=d

y=c

∂Q
∂y

dy

]
dx

The first of these new integrals becomes:

� y=d

y=c

[� x=b

x=a

∂P
∂x

dx

]
dy =

� y=d

y=c

[
P(x, y)

]x=b

x=a
dy

and evaluating P(x, y) at the x-endpoints yields:

� y=d

y=c
[P(b, y)− P(a, y)] dy =

� y=d

y=c
P(b, y) dy +

� y=c

y=d
P(a, y) dy

The last two integrals here are integrals of P dy up the right side of the
rectangle and down the left side of the rectangle. But along the top
of the rectangle (where y = d) and the bottom (where y = c), dy = 0,
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so the integrals of P dy along the top and the bottom of the rectangle
equal 0, hence we can “add 0” to the previous result to get:

� y=d

y=c

[� x=b

x=a

∂P
∂x

dx

]
dy =

�
∂R

P dy

A similar process yields:

� x=b

x=a

[� y=d

y=c

∂Q
∂y

dy

]
dx =

� x=b

x=a
[Q(x, d)− Q(x, c)] dx

This last integral then becomes:

−
� x=a

x=b
Q(x, d) dx −

� x=b

x=a
Q(x, c) dx

These two integrals integrate Q dx along the top and bottom (respec-
tively) of the rectangle (moving counterclockwise). On the left and
right sides x is constant to dx = 0, hence the integral of Q dx is 0 there.
“Adding zero” to the two negative integrals tells us that:

� x=b

x=a

[� y=d

y=c

∂Q
∂y

dy

]
dx = −

�
∂R

Q dx

Combining this with the result about the integral of P dy yields:

�
R

[
∂P
∂x

+
∂Q
∂y

]
dA =

�
∂R

[P dy − Q dx]

which is exactly what we wanted to show. We state a somewhat more
general version of this as our first big theorem of this chapter.

a b

c

d

Remember that a C1 function is differen-
tiable and its derivatives are continuous.
Also remember that we are tacitly assum-
ing that our simple, closed, positively ori-
ented boundary curve ∂R is piecewise
smooth.

“Nice” will encompass pretty much any
region you encounter in practice.

The theorem applies to the unit circle,
x2 + y2 = 1 (which is closed), but not the
top half of that circle, y =

√
1 − x2.

2D Divergence Theorem:

If: R is a “nice” closed, bounded region in the xy-plane with
∂R a simple, closed, positively oriented curve, and
F(x, y) = ⟨P(x, y), Q(x, y)⟩ with P and Q both C1 functions
on an open region containing R,

then: �
∂R

[P dy − Q dx] =
�

R

[
∂P
∂x

+
∂Q
∂y

]
dA

or, equivalently:
�

∂R
F · n ds =

�
R

div(F) dA

Some comments about this result are in order.

• We have not yet defined what a “nice” region is.

• The boundary curve R must be closed for this theorem to apply.

• So far we have only proved this theorem for regions with rectangles
as boundary curves, so there is more work to do.
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• We will often use this theorem to find flux when the flux integral
is difficult to compute but the corresponding double integral of the
divergence of the vector field is easier to set up or easier to work out.

• In almost every other textbook you will encounter, this result is called
the “flux-divergence form of Green’s Theorem,” but “2D Divergence
Theorem” is a much better name for a variety of reasons.

−2 −1 0 1 2

−2

−1

0

1

2
Example 2. Compute the flux of F(x, y) =

〈
x3 + 2y, x − 1

〉
across the

(positively oriented) circle C given by x2 + y2 = 4.

Solution. Applying the 2D Divergence Theorem, div (F) (x, y) = 3x2

so the flux across the circle is:
�
C
[P dy − Q dx] =

�
D

[
∂P
∂x

+
∂Q
∂y

]
dA =

�
D

3x2 dA

where D is the disk x2 + y2 ≤ 4. Using polar coordinates, this becomes:

�
D

3x2 dA =

� θ=2π

θ=0

� r=2

r=0
3 (r cos(θ))2 · r dr dθ

which evaluates to 12π. ◀

Practice 2. If G(x, y) =
〈

x2 + arctan(y3), y4 − ln(1 + x5)
〉

and R is the
rectangle with opposing vertices at (1, 2) and (3, 7), compute the flux
of G across R.

Practice 3. Compute the flux of B(x, y) =
〈
y3 + 17, x5 − 9

〉
across the

circle of radius
√

17 centered at
(
π4, e2).

Simple Regions

We call a region R simple if it is both “Type V” and “Type H” (using
terminology from our study of double integrals). That is, R can de-
scribed both as fB(x) ≤ y ≤ fT(x) for a ≤ x ≤ b (as shown below left)
and as gL(y) ≤ x ≤ gR(y) for c ≤ y ≤ d (below right).

y=fB(x)

y=fT (x)

a b

c

d
x=gL(y)

x=gR(y)

a b

c

d

Rectangles and circles are special cases of simple regions (as is the
region shown above).
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Given a C1 vector field F(x, y) = ⟨P(x, y), Q(x, y)⟩ and a simple
region R we want to show that:

�
∂R

[P dy − Q dx] =
�

R

[
∂P
∂x

+
∂Q
∂y

]
dA

Following our method for rectangles, rewrite the double integral as:

� y=d

y=c

[� x=gR(y)

x=gL(y)

∂P
∂x

dx

]
dy +

� x=b

x=a

[� y= fT(x)

y= fB(x)

∂Q
∂y

dy

]
dx

The first of these new double integrals becomes:

� y=d

y=c

[
P(x, y)

]x=gR(y)

x=gL(y)
dy =

� y=d

y=c
[P(R(y), y)− P(L(y), y)] dy

Splitting this last integral into two pieces, we can reverse the order of
integration on the second piece (so that we are traversing the left side
using the proper orientation, see margin) to get:

� y=d

y=c
P(R(y), y) dy +

� y=c

y=d
P(L(y), y) dy =

�
∂R

P dy

Proceeding similarly, the second of the double integrals becomes:

� x=b

x=a
[Q(x, y)]y= fT(x)

y= fB(x) dx =

� x=b

x=a
[Q(x, T(x))− Q(x, B(x))] dx

Now split this last integral into two pieces, and reverse the order of
integration on the first piece (so that we are traversing the top side
using the proper orientation, see margin) to get:

−
� x=a

x=b
Q(x, T(x)) dx −

� x=b

x=a
Q(x, B(x)) dx = −

�
∂R

Q dx

Adding together these two results proves the 2D Divergence Theorem
for simple regions.

x=gL(y)

x=gR(y)

a b

c

d

y=fB(x)

y=fT (x)

a b

c

d

0 1 2

0

1

2

Example 3. Compute the flux of ⟨x, y⟩ across the (positively oriented)
triangle with vertices at (0, 0), (2, 0) and (2, 2).

Solution. We could compute this flux directly by parameterizing the
three sides of the triangle (see margin) and computing three flux inte-
grals (see Practice 4), or we could apply the 2D Divergence Theorem. If
T is the region inside the triangle, then the flux across the triangle is:

�
∂T

[P dy − Q dx] =
�

T

[
∂P
∂x

+
∂Q
∂y

]
dA =

�
T

2 dA = 4

Because the divergence is constant, instead of integrating you can just
multiply the divergence (2) by the area of the triangle (2) to get 4. ◀

Practice 4. Verify the 2D Divergence Theorem in Example 3 by comput-
ing three flux integrals.

a b

c

d

Practice 5. Evaluate
�

∂R

[
x2y dy + xy2 dx

]
(with R as in the margin).
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More General Regions

R

What about still more general regions that are not simple? The region
R in the margin is not a simple region, but we can cut it into two pieces,
R1 and R2, each of which is a simple region, as shown below:

R1 R2

If we compute the flux across the boundaries of R1 and R2 then add
the results, the fluxes across the common boundary will cancel (“stuff”
exiting R1 on the right, resulting in positive flux, will immediately
enter R2 on the left, resulting in negative flux of the same magnitude —
and vice versa). So the sum of the fluxes across the boundaries of the
smaller regions will equal the flux across the boundary of the original
larger region.

Applying this idea repeatedly, we can extend the 2D Divergence
Theorem to any region in the xy-plane that is a finite union of simple
regions, and we can now retroactively define “nice” in the statement of
the 2D Divergence Theorem accordingly.

−1 0 1

0

1

Example 4. Compute the flux of F(x, y) =
〈

x3 − y3, y2 − x2〉 across the
(positively oriented) curve C consisting of the portion of the graph of

y = 1.5625 −
(

x2 − 1
)2

above the x-axis, along with the portion of the
x-axis connecting its endpoints.

Solution. The region R enclosed by C is not a simple region (see
margin) but it is the union of two simple regions (split R along the
y-axis), so we can apply the 2D Divergence Theorem

�
C

F · n ds =
�

R
div (F) dA =

�
R

[
3x2 + 2y

]
dA

Iterating the double integral, this becomes:

� x=1.5

x=−1.5

� y=1.5625−(x2−1)
2

y=0

[
3x2 + 2y

]
dy dx =

891
80

= 11.1375

where the x-limits come from solving 0 = 1.5625 −
(
x2 − 1

)2. ◀

You should work out the details of evalu-
ating this double integral.

Practice 6. Compute the flux of F(x, y) =
〈

x3 − y3, y2 − x2〉 across the
(positively oriented) curve K consisting of the portion of the graph of

y = 1.5625 −
(

x2 − 1
)2

above the x-axis.
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16.4 Problems

In Problems 1–14 evaluate the given flux integral
over the specified curve (assuming positive orienta-
tion). (Suggestion: Use the 2D Divergence Theorem.)

1. C is the unit circle:�
C

[
y2 dy − x2 dx

]
2. C is the ellipse 4x2 + 9y2 = 36:

�
C

[
y3 dy − x3 dx

]
3. C is the unit circle:

�
C
[5x dy − 8y dx]

4. C is the rectangle with opposing vertices at (0, 0)
and (10, 12):

�
C
[(5x − 17y) dy − (11x + 8y) dx]

5. C is the rectangle with vertices at (−3, 3), (10, 3),
(10, 12) and (−3, 12):

�
C
[(17x − 5y) dy − (8x + 11y) dx]

6. C is the rectangle with opposing vertices at (0, 0)
and (L, H):

�
C
[(αx + βy) dy − (γx + δy) dx]

7. C is the circle x2 + y2 = 16:
�
C

[
x3 dy − y3 dx

]
8. C is the circle x2 + y2 = 16:

�
C

[
x4 dy − y4 dx

]
9. R is the region in the first quadrant below the

line x + y = 1:
�

∂R

[
2x3 dy − 4y2 dx

]
10. R is the region in the first quadrant below the

line x + y = 10:
�

∂R

[
3x2 dy − 5y3 dx

]

11. R is the region below the parabola y = 9 − x2

and above the x-axis:
�

∂R

[
x2y dy − xy2 dx

]
12. R is the region below the parabola y = 9 − x2

and above the x-axis:
�

∂R

[
3xy2 dy −

(
5y − y3

)
dx

]
13. R is the region below the parabola y = 9 − x2

and above the x-axis:
�

∂R

[
x2y dy − y dx

]
14. R is the region below the parabola y = 25 − x2

and above the x-axis:
�

∂R

[
xy2 dy − 5y dx

]
15. Compute the flux of the vector field ⟨x, y⟩ across

the unit circle (oriented positively).

16. Compute the flux of
〈
2x + y3, x3 + 5y

〉
across the

circle x2 + y2 = 7 (oriented positively).

17. Compute the flux of
〈

x3 − 7y, 8x + y3〉 across the
unit circle (oriented positively).

18. Compute the flux of
〈
17x3 − 8 sin(y), 13ex + 7y3〉

across the circle x2 + y2 = 5 (oriented positively).

19. Compute the flux of ⟨2 − 5x + 7y, 8 − 11x + 14y⟩
across ∂R if R is a simple region with area 100π2.

20. If F =
〈
12 + 11x + 7y · sin(y), 14 − 11e2x + 19y

〉
and R is a simple region with area 4

√
2, compute

the flux of F across ∂R.

In Problems 21–24, use the given information to com-
pute

�
C F · n ds (assume C is positively oriented).

21. div (F) = 64, C is the circle x2 + y2 = 10

22. div (F) = 6, C is the circle x2 + y2 = 100

23. div (F) = y, C is x2 + y2 = 4

24. div (F) = x, C is x2 + y2 = 9

25. div (F) = x, C is (x − 2)2 + y2 = 16

26. div (F) = y, C is x2 + (y + 7)2 = 25
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16.4 Practice Answers

1. Along the bottom side (BS) of the rectangle, y = −1 ⇒ dy = 0 so:

�
BS

[
xy dy − x2y dx

]
=

� x=4

x=−2

[
−x · 0 + x2

]
dx = 24

Along the top side (TS) of the rectangle, y = 3 ⇒ dy = 0 so:

�
TS

[
xy dy − x2y dx

]
=

� x=−2

x=4

[
3x · 0 − 3x2

]
dx = 72

Along the right side (RS) of the rectangle, x = 4 ⇒ dx = 0 so:

�
RS

[
xy dy − x2y dx

]
=

� y=3

y=−1
[4y − 16y · 0] dy = 16

And along the left side (LS) of the rectangle, x = −2 ⇒ dx = 0 so:

�
LS

[
xy dy − x2y dx

]
=

� y=−1

y=3
[−2y − 4y · 0] dy = 8

hence the total flux is 24 + 72 + 16 + 8 = 120. On the other hand,
div (G) = y + x2 so:

� x=4

x=−2

� y=3

y=−1

[
y + x2

]
dy dx =

� x=4

x=−2

[
1
2

y + x2y
]y=3

y=−1
dx

=

� 4

−2

[
4 + 4x2

]
dx =

[
4x +

4
2

x3
]4

−2
= 120

results in the same answer.

2. div (G) = 2x + 4y3 so the flux is:

� x=2

x=1

� y=7

y=3

[
2x + 4y3

]
dy dx =

� x=2

x=1
[8x + 2320]y=7

y=3 dx = 2332

3. div (B) = 0 so the flux is 0.

4. Along the bottom side (BS) of the triangle, y = 0 ⇒ dy = 0 so:

�
BS

[x dy − y dx] =
� x=2

x=0
[x · 0 dy − 0 dx] = 0

Along the right side (RS) of the triangle, x = 2 ⇒ dx = 0 so:

�
RS

[x dy − y dx] =
� y=2

y=0
[2 dy − 0 dx] = [2y]20 = 4

And along the hypotenuse (H) of the triangle, y = x ⇒ dy = dx so:

�
H
[x dy − y dx] =

� x=0

x=2
[x dx − x dx] dy = 0

hence the total flux is 0 + 4 + 0 = 4.

Can you see from they graph why the
flux across the bottom side and the hy-
potenuse should be 0, while the flux
across the right side should be positive?
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5. Applying the 2D Divergence Theorem:
�

∂R

[
x2y dy + xy2

]
dA =

�
∂R

[
x2y dy −

(
−xy2

)
dx

]
=

�
R

[
∂

∂x

(
x2y

)
+

∂

∂y

(
−xy2

)]
dA =

�
R

0 dA = 0

no matter what region R is.

6. We cannot apply the 2D Divergence Theorem directly because K
is not a closed curve. However, K together with the line segment
L along the x-axis from (−1.5, 0) to (1.5, 0) is the curve C from
Example 4, so:

flux across K+ flux across L = flux across C =
891
80

Along L, y = 0 ⇒ dy = 0 so the flux across L is:

�
L

[
(x3 − y3) dy − (y2 − x2) dx

]
=

� 1.5

−1.5
x2 dx =

9
4

Inserting this result into the equation above and solving for the
desired flux yields:

flux across K =
891
80

− 9
4
=

711
80

= 11.1375
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16.5 Line Integrals

You have now computed a number of “flux integrals,” which accu-
mulate the total flux of a vector field F across an oriented curve C by
integrating the normal component of the field, F · n, along C. What if,
instead, we integrated the tangential component, F · T, along C? What
would this represent and how can we compute it in practice?

Thinking of the vector field F as a velocity field, we motivated
the flux integral by interpreting it as the amount of “stuff” flowing
perpendicularly to the the curve C during one unit of time. Interpreting
the quantity F · T might measure something about the “stuff” flowing
along the curve at one point, and this integral:

�
C

F · T ds

would then measure something about the “stuff” flowing along C
overall. We sometimes call this integral the flow of F along C, and if C
happens to be a closed curve we might also call it the circulation of F
along C. In general we call of this type of integral a line integral.

Physical interpreting flow and circulation
is more complicated than the interpreta-
tion of flux.

n
T

Although we will sometimes compute
line integrals along actual line segments,
curve integral would be a much better
name. Alas.Evaluating Line Integrals

Evaluating line integrals turns out to be remarkably similar to — and,
in at least one sense, even easier than — computing flux integrals.

Recall that the unit tangent vector is:

T(t) =
r′(t)

∥r′(t)∥
and that the arclength element is:

ds = ∥r′(t)∥ dt

If r(t) for a ≤ t ≤ b paramterizes a smooth, oriented, simple curve C
then r′(t) gives us a tangent vector at each point so:

�
C

F · T ds =
� t=b

t=a
F (r(t)) · r′(t)

∥r′(t)∥ ∥r′(t)∥ dt =
� t=b

t=a
F (r(t)) · r′(t) dt

−3 −2 −1 0 1 2 3
0

1

2

3

4

Example 1. Compute the flow of F(x, y) = ⟨−y, x⟩ along the upper half
of the (positively oriented) circle x2 + y2 = 9.

Solution. r(t) = ⟨3 cos(t), 3 sin(t)⟩ for 0 ≤ t ≤ π parameterizes the
semicircle, so with r′(t) = ⟨−3 sin(t), 3 cos(t)⟩ our line integral be-
comes:
� t=π

t=0
⟨−3 sin(t), 3 cos(t)⟩ · ⟨−3 sin(t), 3 cos(t)⟩ dt =

� π

0
9 dt = 9π

Alternatively, we could note that ⟨−y, x⟩ is always tangent to the circle
(see margin) and pointing in the positive rotational direction, so F · T =

∥F∥ · ∥T∥ cos(0) = ∥F∥ =
√

y2 + x2 = 3 and the line integral becomes
3 times the arclength integral for C, which has length 3π. ◀

Practice 1. Compute the circulation of G(x, y) = ⟨x, y⟩ along the (posi-
tively oriented) unit circle. Could you have predicted the value of the
line integral based on a graph?

Practice 2. Compute the circulation of F(x, y) = ⟨−y, x⟩ along the
portion of the parabola y = 9 − x2 from x = 3 to x = −3.



1636 jeff eldridge

Work

So far we have been envisioning most vectors fields as velocity fields,
but another very common use of vector fields is to think of each field
vector as a force vector.

You have previously learned how to compute work in the special
case where the displacement of an object and the force acting on that
object happened to be in the same direction. And using the definition
of work from physics, W = F · d, you computed work when the force,
F, and the displacement, d, were constant (but not necessarily pointing
in the same direction). We now have the tools to tackle much more
general work problems. First in 2D, with 3D problems in the next

chapter.If C is a smooth curve given by r(t) = ⟨x(t), y(t)⟩ for a ≤ t ≤ b and
F(x, y) is a vector field representing the force applied to an object at
the point (x, y), we want to compute the work done by the force field
in moving the object from r(a) to r(b). If F is constant and C is a line
segment, then the answer would be:

F · (r(b)− r(a))

but otherwise we can partition C into small pieces corresponding to
small increments in time ∆t. On the k-th piece of the curve, starting at
position

(
xtk , ytk

)
, we can approximate:

F(x, y) ≈ F
(

xtk , ytk

)
= F (r (tk))

and approximate the displacement along this part of the curve by:

r (tk + ∆t)− r (tk) ≈ r′ (tk) · ∆t

so the work done moving the object along this piece of the curve is:

Wk ≈ F (r (tk)) · r′ (tk) · ∆t

and adding up all of these approximate work values along the curve
yields a Riemann sum:

n

∑
k=1

Wk =
n

∑
k=1

F (r (tk)) · r′ (tk) · ∆t −→
� t=b

t=a
F (r(t)) · r′(t) dt

which converges to the definite integral above right.

This integral should look familiar!

Example 2. Compute the work done by the force field F(x, y) = ⟨y, x⟩
moving an object on the circle x2 + y2 = 2 from (

√
2, 0) to (1, 1).

Solution. r(t) =
〈√

2 cos(t),
√

2 sin(t)
〉

for 0 ≤ t ≤ π
4 parameterizes

the circle in the desired direction, so with r′(t) =
〈
−
√

2 sin(t),
√

2 cos(t)
〉

our work integral becomes:
� t= π

4

t=0

〈√
2 sin(t),

√
2 cos(t)

〉
·
〈
−
√

2 sin(t),
√

2 cos(t)
〉

dt

=

� π
4

0

[
2 cos2(t)− 2 sin2(t)

]
dt =

� π
4

0
2 cos(2t) dt = 1

If forces are measured in Newtons and distances in meters, then the
work done by the force field would be 1 N-m, or 1 J. ◀



contemporary vector calculus 1637

Practice 3. Compute the work done by the force field G(x, y) =〈
2xy, x2〉 moving an object along y = x2 from (1, 1) to (3, 9).

It is important to note that, in Example 2 and Practice 3, the path
along which the object moves is not the path along which the particle
would move if subjected only to the forces from F. How could this be?
Imagine a thin wire bent in the shape of the curve C, with the object
being a small bead with hole drilled through the center so that it is
constrained to move (with minimal friction) along the curve C.

In such a situation, only the component of the force vectors in the
curve’s tangential direction, F · T, contribute to the object moving along
the curve. The force applied to the bead by the wire at each point
cancels out the normal component of the force vectors.

Example 3. Compute the work done by the force field F(x, y) moving
an object of mass m in such a way that the object’s position is given by
r(t) =

〈
t2, t3〉 from time t = 0 to time t = 1.

Solution. Here we do not have a formula for F, but we do know that
F = ma where a(t) = r′′(t) = ⟨2, 6t⟩ so the work done by F is:

� t=1

t=0
m ⟨2, 6t⟩ ·

〈
2t, 3t2

〉
dt = m

� 1

0

[
4t + 18t3

]
dt = m

[
2t2 + 4.5t4

]1

0
= 6.5m

If forces are measured in N, mass in kg and distances in m, then the
work done by the force field would be 6.5m J. ◀

Practice 4. Compute the work done by the force field G(x, y) moving
an object of mass m in such a way that the object’s position is given by
r(t) = ⟨3 cos(t), 3 sin(t)⟩ from time t = 0 to time t = π.

It is also important to note that our definition of work computes the
work done by the force field F moving an object along a curve. If you
want to compute the work you do pushing an object against a force field
(say, lifting a heavy textbook from the floor to a table, working against
gravity) then you would need to multiply the answer by −1 because
all of the forces you need to apply are in the opposite direction of the
forces in the force field.

Properties of Line Integrals

Here we integrate from t =
√

2 to t = 1
rather than the other way around so that
the object moves from (

√
2, 0) to (1, 1), as

specified in Example 2.

In Example 2, r(t) =
〈√

2 cos(t),
√

2 sin(t)
〉

was not the only parame-

terization we could have used for the arc of x2 + y2 = 2. If instead we
use r(t) =

〈
t,
√

2 − t2
〉

for 1 ≤ t ≤
√

2 then the work integral becomes:

� t=1

t=
√

2

〈√
2 − t2, t

〉
·
〈

1,− t√
2 − t2

〉
dt =

� 1

√
2

2 − 2t2
√

2 − t2
dt

The trig substitution t =
√

2 sin(θ) turns this (improper) integral into:

� θ=0

θ= π
4

2 − 4 sin2(θ)√
2 cos(θ)

·
√

2 cos(θ) dθ =

� π
4

0
2 cos(2θ) dθ
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which is the same integral as in Example 2. This is very much what we
should expect to be true: the value of a line integral of a field F across
a curve C should not depend on our choice of parameterization for C.

We need the assumption that these pa-
rameter functions are one-to-one to as-
sure that they do not “double back” as
they trace out the curve.

If r1(t) for a ≤ t ≤ b and r2(t) for α ≤ τ ≤ β are both one-to-
one, C1 parameter representations of a smooth, oriented curve C, with
r1(a) = r2(α) and r1(b) = r2(β), and if ψ(τ) is some differentiable
function with r2(τ) = r1(ψ(τ)) for α ≤ τ ≤ β, then computing the line
integral of F along C using r2 yields:

� τ=β

τ=α
F (r2(τ)) · r′2(τ) dτ =

� τ=β

τ=α
F (r1(ψ(τ))) · r′1(ψ(τ)) · ψ′(τ) dτ

but the substitution t = ψ(τ) ⇒ dt = ψ′(τ) dτ turns this into:

� t=b

t=a
F (r1(t)) · r′1(t) dt

which the the line integral of F along C when computed using r1.

Theorem:
�
C

F · T ds does not depend on the parameterization of C.
The general proof hinges on the existence
of ψ in the preceding discussion. This is
guaranteed by the Implicit Function The-
orem, which you may not have studied.
The result also holds if two parameteri-
zations of a closed curve do not have the
same endpoints, for example the unit cir-
cle traced counterclockwise from (1, 0) to
(1, 0), or from (0, 1) to (0, 1).

In our computations with line integrals, C is an oriented curve. What
happens if we reverse the orientation?

Definition: If C is an oriented curve going from A to B then −C is
the oriented curve that traces out the same path but from B to A.

At each point along −C, T will point in the opposite direction as it
does at the same point on C, so:

Theorem:
�
−C

F · T ds = −
�
C

F · T ds

So far our line integral computations have involved smooth curves.
If instead our curve is piecewise smooth (consisting of finitely many
smooth pieces), say C = C1 ∪ C2, meaning C consists of C1 followed by
C2 where the ending point of C1 is the starting point of C2, then:

�
C1∪C2

F · T ds =
�
C1

F · T ds +
�
C2

F · T ds

This extends to any finite number of smooth curves pieced together.

Differential Forms and Other Notation

We originally defined a line integral as the integral of F · T over a curve
C, which we compute using:

�
C

F · T ds =
� t=b

t=a
F (r(t)) · r′(t) dt

where r(t) for a ≤ t ≤ b parameterizes C. Using differential notation:

dr
dt

= r′(t) ⇒ dr = r′(t) dt
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we rewrite the line integral as
�
C F · dr or sometimes

�
C F · ds. If we

write F = ⟨P, Q⟩ and r(t) = ⟨x(t), y(t)⟩ then:
� t=b

t=a
F (r(t)) · r′(t) dt =

� t=b

t=a
⟨P, Q⟩ ·

〈
dx
dt

,
dy
dt

〉
dt

=

� t=b

t=a

[
P · dx

dt
+ Q · dy

dt

]
dt =

�
C
[P dx + Q dy]

This differential form notation can be useful.

Compare these line-integral notations:
�
C

F · T ds =
�
C
[P dx + Q dy]

with our notations for flux integrals:
�
C

F · n ds =
�
C
[P dy − Q dx]

0 1 2

0

1

2

Example 4. Compute the circulation of F(x, y) = ⟨x, xy⟩ along the
x-axis from the origin to the point (2, 0), then vertically up to the point
(2, 2), and finally back to the origin along the line y = x.

Solution. The triangular curve here is piecewise smooth, so we need
to split our work integral into three pieces (see margin). Along the first
line segment, C1, from (0, 0) to (2, 0), y = 0 ⇒ dy = 0 so:

�
C1

[P dx + Q dy] =
� x=2

x=0
[x dx + xy · 0] =

[
1
2

x2
]2

0
= 2

On the second segment, C2, from (2, 0) to (2, 2), x = 2 ⇒ dx = 0 so:
�
C2

[P dx + Q dy] =
� y=2

y=0
[2 · 0 + 2y dy] =

[
y2
]2

0
= 4

On the third segment, C3, from (2, 2) to (0, 0), y = x ⇒ dy = dx so:
�
C3

[P dx + Q dy] =
� x=0

x=2

[
x dx + x2 dx

]
=

[
1
2

x2 +
1
3

x3
]0

2
= −14

3

Adding up these values: 2 + 4 − 14
3 = 4

3 . Notice that along C1, the
field vectors F point in the same direction as the unit tangent vectors
T = ⟨1, 0⟩, so F · T > 0 everywhere on C1: the circulation of F along
C1 should be positive (as indeed it is). Likewise, along C2 the angle
between each field vector and the unit tangent vector ⟨0, 1⟩ is acute, so
that F · T > 0 here as well. Finally, along C3 the field vectors generally
point in the opposite direction from the unit tangent vectors

〈
− 1√

2
, 1√

2

〉
so that F · T < 0 (resulting in a negative circulation). ◀

Practice 5. Compute the flow of G(x, y) = ⟨x, xy⟩ along the portion
of the parabola x = −y2 + 5y − 4 in the first quadrant, oriented in the
direction of increasing y.

Practice 6. Compute the flow of F(x, y) = ⟨−y, x⟩ along the portion of
the cycloid given by r(t) = ⟨t − sin(t), 1 − cos(t)⟩ for 0 ≤ t ≤ 2π.

Scalar Line Integrals

A line integral involves integrating the tangential component of a force,
F · T, along a curve C. The function F · T is a scalar function defined at
every point along this curve. If, somehow, F · T = 1 at all points on C
this line integral becomes:

�
C

F · T ds =
�
C

1 ds
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which is simply the arclength of C. If f (x, y) = F · T(x, y) is some
function other than 1, the line integral

�
C f ds may represent other

physical quantities, such as mass (if f is a density function) or area (if
f represents the height of a “fence” sitting above C).

Example 5. A wire sits in the xy-plane along the curve y = x3 for
1 ≤ x ≤ 2 (with distances measured in cm). If the wire’s density at any
point is δ(x, y) = 2 + 0.1y g/cm, compute the mass of the wire.

Solution. To compute the mass, we can use a line integral to integrate
the density function along the curve, which we designate C. Parameter-
izing C using r(t) =

〈
t, t3〉 for 1 ≤ t ≤ 2, we have:

r(t) =
〈

t, t3
〉

⇒ r′(t) =
〈

1, 3t2
〉

⇒
∥∥r′(t)

∥∥ =
√

1 + 9t4

so that:
ds =

∥∥r′(t)
∥∥ dt =

√
1 + 9t4 dt

and hence the mass is given by:

�
C
[2 + 0.1y] ds =

� t=2

t=1

[
2 + 0.1t3

]√
1 + 9t4 dt ≈ 17.34

The mass of the wire is (approximately) 17.34 g. ◀

π
2π

2
4

6
0

2

4

6

Practice 7. You build a fence of variable height above the curve in the
xy-plane given by r(t) = ⟨t − sin(t), 2 − 2 cos(t)⟩ for 0 ≤ t ≤ 2π such
that the height of the fence is h(t) = 2 + sin(2t) (with all distances
measured in meters). Find the surface area of (one side of) this fence.

16.5 Problems

In Problems 1–4 estimate whether the work done
by the vector field in the graph below along the
indicated path is positive, negative or zero.

A
B

C

K

0 1 2

0

1

2

1. A 2. B 3. C 4. K

In Problems 5–8 estimate whether the work done
by the vector field in the graph below along the
indicated path is positive, negative or zero.

A
B

C

K

0 1 2

0

1

2

5. A 6. B 7. C 8. K
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9. Calculate the work done by the force field
F(x, y) = ⟨x, x + y⟩ to move an object along the
path r(t) = ⟨2 + 3t, 4t⟩ for 0 ≤ t ≤ 3.

10. Calculate the work done by the force field
G(x, y) = ⟨−y, x⟩ to move an object along the
path r(t) =

〈
t2, t

〉
for 0 ≤ t ≤ 2.

11. Calculate the work done by the force field
F(x, y) = ⟨x, x⟩ to move an object along the line
segment from (1, 3) to (2, 7).

12. Calculate the work done by the force field
F(x, y) = ⟨y, 2 − x⟩ to move an object along the
line segment from (1, 3) to (2, 7).

In Problems 13–16 compute the work done by the
radial force field:

F(x, y) =

〈
x√

x2 + y2
,

y√
x2 + y2

〉
moving a particle along the indicated oriented curve.

13. The portion of the circle x2 + y2 = 9 in the first
quadrant (in the positive direction).

14. The line segment from (1, 1) to (3, 3).

15. The line segment from (2, 2) to (1, 1).

16. The portion of the circle x2 + y2 = 9 in the first
quadrant in the clockwise (negative) direction.

In Problems 17–22 compute the work done by the
“swirl” force field:

G(x, y) =

〈
−y√

x2 + y2
,

x√
x2 + y2

〉
moving a particle along the indicated oriented curve.

17. The portion of x2 + y2 = 9 in the first quadrant
(oriented positively).

18. The line segment from (1, 1) to (3, 3).

19. The line segment from (2, 2) to (1, 1).

20. The portion of x2 + y2 = 9 in the first quadrant
(oriented negatively).

21. The circle x2 + y2 = 16 (oriented positively).

22. The circle x2 + y2 = 25 (oriented negatively).

In Problems 23–36 evaluate each line integral over
the specified (positively oriented) curve.

23. C is the square with opposing vertices at (0, 0)
and (1, 1): �

C
[5y dx + 3y dy]

24. C is the square with opposing vertices at (0, 0)
and (1, 1): �

C
[5x dx + 3y dy]

25. C is the portion of the parabola y = 1 − x2 from
(1, 0) to (−1, 0), followed by the line segment
from (−1, 0) to (1, 0):

�
C
[5y dx + 3x dy]

26. C is the portion of the parabola y = 1 − x2 from
(1, 0) to (−1, 0), followed by the line segment
from (−1, 0) to (1, 0):

�
C
[5x dx + 3x dy]

27. C is the ellipse 4x2 + 9y2 = 36:
�
C

[
y3 dx + x3 dy

]
28. C is the unit circle:�

C
[5x dx + 8y dy]

29. C is the rectangle with opposing vertices at (0, 0)
and (10, 12):

�
C
[(5x − 17y) dx + (11x + 8y) dy]

30. C is the rectangle with vertices at (−3, 3), (10, 3),
(10, 12) and (−3, 12):

�
C
[(17x − 5y) dx + (8x + 11y) dy]

31. C is the rectangle with opposing vertices at (0, 0)
and (L, H):

�
C
[(αx + βy) dx + (γx + δy) dy]

32. C is the circle of radius R centered at the origin:
�
C
[(αx + βy) dx + (γx + δy) dy]

33. C is the circle x2 + y2 = 16:
�
C

[
x3 dx + y3 dy

]
34. C is the circle x2 + y2 = 16:

�
C

[
x4 dx + y4 dy

]
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35. C is the circle x2 + y2 = 16:�
C

[
y3 dx + x3 dy

]
36. C is the circle x2 + y2 = 16:�

C

[
y4 dx + x4 dy

]
37. Compute the work done to move an object

through the vector field
〈

x3, x + y3〉 along the
triangle with vertices at (0, 0), (1, 0) and (1, 1)
(oriented positively).

38. Compute the work done to move an object
through the vector field

〈
5 + x3, 6x + y3〉 along

the triangle with vertices at (0, 0), (7, 0) and (7, 3)
(oriented positively).

39. Find the mass of a wire with density δ(x, y) =

1 + x bent in the shape of the parabola y = x2 for
1 ≤ x ≤ 2.

40. Find the mass of a wire with density δ(x, y) =

1 + y bent in the shape of the parabola y = x2 for
1 ≤ x ≤ 2.

41. Find the mass of a wire with density δ(x, y) =

1 + y bent in the shape of the curve y = x3 for
0 ≤ x ≤ 2.

42. Find the mass of a wire with density δ(x, y) =

1 + x bent in the shape of the curve y = x3 for
0 ≤ x ≤ 2.

16.5 Practice Answers

−3 −2 −1 0 1 2 3
0

1

2

3

4

1. As in Example 1, r(t) = ⟨3 cos(t), 3 sin(t)⟩ for 0 ≤ t ≤ π param-
eterizes the semicircle, so with r′(t) = ⟨−3 sin(t), cos(t)⟩ our line
integral becomes:

� t=2π

t=0
⟨3 cos(t), 3 sin(t)⟩ · ⟨−3 sin(t), 3 cos(t)⟩ dt =

� 2π

0
0 dt = 0

Alternatively, we could note that ⟨x, y⟩ is always normal to the
circle (see margin) and therefore perpendicular to T, so F · T = 0
everywhere along the semicircle.

2. Using r(t) =
〈
t, 9 − t2〉 for t ranging from −3 to 3 the line integral

becomes:
� t=−3π

t=3

〈
−9 + t2, t

〉
· ⟨1,−2t⟩ dt =

� −3

3

[
−9 − t2

]
dt = 72

3. Using r(t) =
〈
t, t2〉 for t ranging from 1 to 3 the line integral be-

comes: � t=3

t=1

〈
2t3, t2

〉
· ⟨1, 2t⟩ dt =

� 3

1

[
4t3

]
dt = 80

4. F(t) = ma(t) = mr′′(t) = ⟨−3m cos(t),−3m sin(t)⟩ so the work
done is:

� t=π

t=0
⟨−3m cos(t),−3m sin(t)⟩ · ⟨cos(t), sin(t)⟩ dt = −3mπ

5. The curve is in the first quadrant when y > 0 and x = −y2 + 5y− 4 >

0 ⇒ (y − 1)(y − 4) < 0 ⇒ 1 < y < 4 so with dx = (−2y + 5) dy
the flow is given by:

� y=4

y=1

(
−y2 + 5y − 4

)
(−2y + 5) dy +

(
−y2 + 5y − 4

)
y dy = 11.25
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16.6 The Fundamental Theorem of Line Integrals

You now know how to compute the line integral of a vector field F(x, y)
along a curve C parameterized by r(t) for a ≤ t ≤ b:

�
C

F · dr =
� t=b

t=a
F (r(t)) · r′(t) dt

If F = ∇φ (so that F is a gradient field) then:

�
C
∇φ · dr =

� t=b

t=a
∇φ (r(t)) · r′(t) dt

This integrand should look familiar (from the Chain Rule for Paths):

d
dt

[φ (r(t))] = ∇φ (r(t)) · r′(t)

So the line integral of ∇φ along C becomes (using the Fundamental
Theorem of Calculus):

� t=b

t=a
∇φ (r(t)) · r′(t) dt =

� t=b

t=a

d
dt

[φ (r(t))] dt = φ (r(b))− φ (r(a))

This says that the line integral of a gradient field along a curve can be
computed by evaluating the potential function for that gradient field at
the endpoints of the curve and taking the difference.

Fundamental Theorem of Line Integrals (FTLI)

If: C is a piecewise-smooth, oriented curve
starting at A and ending at B, and

φ is a C1 function on some open set containing C
then: �

C
∇φ · dr = φ (B)− φ (A)

Example 1. If φ(x, y) = x2 + y3, compute the line integral of ∇φ along
the line segment L from (0, 0) to (2, 4).

Solution. Applying the Fundamental Theorem of Line Integrals:
�
C
∇φ · dr = φ (2, 4)− φ (0, 0) = [4 + 64]− [0 + 0] = 68

Using our old method with r(t) = ⟨t, 2t⟩ for 0 ≤ t ≤ 2:

�
C
∇φ · dr =

� t=2

t=0

〈
2t, 3 · 4t2

〉
· ⟨1, 2⟩ dt =

� 2

0

[
2t + 24t2

]
dt

which also evaluates to 68, as expected. Which way was easier? ◀

Note that: ∇φ(x, y) =
〈
2x, 3y2〉

Practice 1. If φ(x, y) = x2 + y3, compute the line integral of ∇φ along
the portion of the parabola y = x2 from (0, 0) to (2, 4).

Practice 2. If ψ(x, y) = x4y5, compute the line integral of ∇ψ along the
unit circle, oriented positively.
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Closed Curves

For a line integral around a closed curve we sometimes use a small
circle on the integral sign to emphasize that the curve is closed:

•
�
C

F · dr indicates C is closed

•
�
C

F · dr indicates C is closed and positively oriented

•
�
C

F · dr indicates C is closed and negatively oriented

If F = ∇φ then the FTLI says that:
�
C
∇φ · dr = φ(B)− φ(A) = 0

because A = B for any closed curve. If F is not a gradient field this
may or may not be true. See Example 4 from Section 16.5 for the

line integral of a vector field around a
closed curve that is not 0. What can you
conclude about that vector field?

Example 2. If F(x, y) =
〈

4x3y7 − sin (ex) , 7x4y6 + arctan
(

y3
)〉

, com-

pute the circulation of F along E , the ellipse 9(x− 1)2 + 11(y+π)2 = 1.

Solution. Applying the Mixed-Partials Test:

∂

∂x

[
7x4y6 + arctan

(
y3
)]

− ∂

∂y

[
4x3y7

]
= 0

so F might be a gradient field, and in fact:

F(x, y) = ∇
(

x4y7 −
� x

0
sin (eu) du +

� y

0
arctan

(
v3
)

dv
)

hence
�
E

F · dr = 0, because E is a closed curve. ◀

Example 2 did not specify the orientation of the closed curve E , but
here it did not matter because the value of the line integral turned out
to be 0. Henceforth, if the orientation of a closed curve is not specified,
we will assume that it is oriented positively (counterclockwise).

𝒞

Practice 3. If G(x, y) =
〈
2x cos

(
x2y3) , 3y2 cos

(
x2y3)〉, compute the

circulation of G along the curve C shown in the margin figure.

Path-Independent Vector Fields

We now know that any gradient field is path-independent. That
is, the value of line integral of any gradient field along a piecewise-
smooth curve depends only on the value of the potential function at
the endpoints, not the path the curve takes between those endpoints.
Consequently, the line integral of a gradient field along any closed path
must be 0. We also know that there are vector fields that do not possess
the path-independence property and have line integrals along certain
closed paths that are not 0. It turns out that gradient fields are the only
vectors fields that have path-independence property.
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Theorem: If F(x, y) is a C1 vector field on an open, path-connected
set D then the following are equivalent:

• F = ∇φ for some function φ(x, y)

• F is path-independent

•
�
C

F · dr = 0 for any piecewise-smooth, closed curve C

Proof. If the third condition holds, for any two distinct points A and
B in the xy-plane let C1 and C2 be any two paths from A to B. Then
C1 − C2 = C1 ∪ {−C2} is a closed curve, so:

0 =

�
C1−C2

F · dr =
�
C1

F · dr +
�
−C2

F · dr =
�
C1

F · dr −
�
C2

F · dr

hence the line integrals of F along these two paths must be equal.
If the second condition holds, pick any two distinct points A and B

on an arbitrary closed curve C and call one of the two resulting curves
from A to B C1 and the other C2. Then:�

C1

F · dr =
�
C2

F · dr ⇒ 0 =

�
C1

F · dr −
�
C2

F · dr =
�
C

F · dr

hence the second condition implies the third.
If F = ∇φ then the FTLI says F is path-independent, so the first

condition implies the second. To prove the converse, assume that
F = ⟨P, Q⟩ is path-independent. We need to show that ⟨P, Q⟩ = ∇φ =〈

φx, φy
〉

for some function φ. Choose any point (a, b) ∈ D and define:

φ(x, y) =
� (x,y)

(a,b)
F · dr

This definition does not specify a path for the line integral, but that is
unnecessary because F is path-independent! Now compute:

∂φ

∂x
(x, y) = lim

h→0

φ(x + h, y)− φ(x, y)
h

The numerator of this limit is:

φ(x + h, y)− φ(x, y) =
� (x+h,y)

(a,b)
F · dr −

� (x,y)

(a,b)
F · dr =

� (x+h,y)

(x,y)
F · dr

Using the parameter representation r(t) = ⟨x + t, y⟩ for 0 ≤ t ≤ h (so
that r′(t) = ⟨1, 0⟩) for the path from (x, y) to (x + h, y) this becomes:

� t=h

t=0
⟨P(x + t, y), Q(x + t, y)⟩ · ⟨1, 0⟩ dt =

� t=h

t=0
P(x + t, y) dt

Finally, applying L’Hôpital’s Rule, the Fundamental Theorem of Calcu-
lus and the continuity of P:

∂φ

∂x
(x, y) = lim

h→0

� t=h
t=0 P(x + t, y) dt

h
= lim

h→0

P(x + h, y)
1

= P(x, y)

as desired. The proof that φy = Q is left to you (as Problem 21).

C1

C2

A

B

C1

−C2

A

B

However we do need to be able to find
some path from (a, b) to an arbitrary point
(x, y) in D that resides entirely in D. For
this reason we need the set D to be path-
connected, which we define to mean sets
for which any two points can be joined
by a path that sits entirely in that set.
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Conservation of Energy

If a force field F acts on a particle with mass m and position r(t), then:

F (r(t)) = ma(t) ⇒ F (r(t)) = mr′′(t)

so the work done by F moving the particle from point A (at time tA) to
point B (at time tB) is:

� tB

tA

F (r(t)) · r′(t) dt =
� tB

tA

mr′′(t) · r′(t) dt =
[

1
2

m
∥∥r′(t)

∥∥2
]tB

tA

This evaluates to:

1
2

m
∥∥r′(tB)

∥∥2 − 1
2

m
∥∥r′(tA)

∥∥2
= KE(B)− KE(A)

where KE denotes kinetic energy.

Recall from Chapter 11 that:

d
dt

(v · v) = v · v′ + v′ · v = 2v · v′

⇒ v · v′ =
1
2

d
dt

(
∥v∥2

)

On the other hand, if F is a gradient field with potential function φ

then the work done by F moving the particle from A to B is:

� tB

tA

F (r(t)) · r′(t) dt =
� tB

tA

∇φ (r(t)) · r′(t) dt = [φ(t)]tB
tA

= φ(B)− φ(A)

and equating these two expressions for work:

KE(B)− KE(A) = φ(B)− φ(A) ⇒ KE(B)− φ(B) = KE(A)− φ(A)

If we call −φ the potential energy of the particle, PE, then:

KE(B) + PE(B) = KE(A) + PE(A)

so that the total energy (kinetic plus potential) at each point is the
same. In other words, energy is conserved. This is why we call gradient
fields conservative and why we call the “antigradient” φ the potential
function. (This also explains why physicists write F = −∇ψ and use
−ψ for a potential function rather than +φ.)

Gravitational, electric and magnetic fields
are examples of conservative force fields.

16.6 Problems

1. Compute
�
C ∇φ · dr if φ(x, y) = 3x2 + 4xy − 5y2

and C is the line segment from (1, 2) to (7, 6).

2. Given ψ(x, y) = (5x − 2y)3 + ln(2+ x + 3y), com-
pute

�
K ∇ψ · dr if K is the portion of the unit

circle in the first quadrant.

3. Compute
�
C F · dr if F(x, y) =

〈
2x3, 5

〉
and C is

the portion of y = 3x2 from (1, 3) to (3, 27).

4. Compute
�
K G · dr if G(x, y) = ⟨2x + y, x⟩ and

K is the portion of the parabola x = y2 + 2y + 7
from (6,−1) to (10, 1).

5. Compute
�
C F · T ds if F(x, y) = ⟨7, 4x⟩ and C is

the line segment from (10, 10) to (20, 30).

6. Compute
�
K G · T ds if G(x, y) =

〈
3x2, 4y3〉 and

K is the portion of the circle x2 + y2 = 7 in the
third quadrant (oriented positively).

In Problems 7–12 compute the work done by the
given force field F(x, y) moving a particle from A to
B. (If the field is not conservative, find two paths for
which the work done is different on each path.)

7. F(x, y) = ⟨2x, 2y⟩, A = (1, 2), B = (5, 1)

8. F(x, y) = ⟨y, x⟩, A = (1, 2), B = (5, 5)

9. F(x, y) = ⟨x, x⟩, A = (0, 2), B = (3, 6)

10. F(x, y) =
〈
3x2y, x2〉, A = (1, 0), B = (3, 1)
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11. F(x, y) =
〈
3x2y, x3〉, A = (1, 2), B = (5, 1)

12. F(x, y) = ⟨2x + y, x + 2y⟩, A = (0, 0), B = (3, 4)

In Problems 13–16 evaluate each line integral over
the specified (positively oriented) curve.

13. E is the ellipse 3x2 + 7y2 = 21:

�
E

[
4x3 dx + 5y4 dy

]
14. C is the portion of the ellipse 3x2 + 7y2 = 21 in

the first quadrant:

�
E

[
4x3 dx + 5y4 dy

]
15. K is any smooth curve from (1, π) to (9, π)

�
K

[
2x · cos(y) dx − x2 · sin(y) dy

]

16. C is the curve x4 + y4 = 1:
�
C

[
2x · cos(y) dx − x2 · sin(y) dy

]
In Problems 17–20 verify that the underlying vec-
tor field is path-independent (so that the notation
makes sense), then evaluate the line integral.

17.
� (3,5)

(1,2)

[
6x2y2 dx + 4x3y dy

]

18.
� ( π

2 ,3)

(0,0)
[y · sin(xy) dx + x · sin(xy) dy]

19.
� (

√
2,
√

2)

(−1,1)

[
(4x + 5y) dx +

(
5x + 4y3

)
dy

]

20.
� (3,3)

(−2,−2)

[
21 (7x − 4y)2 dx − 12 (7x − 4y)2 dy

]
21. Complete the proof of the theorem on page 1645.

16.6 Practice Answers

1. Using FTLI: φ(2, 4)− φ(0, 0) =
(
22 + 43)− (

02 + 03) = 68

2. The problem does not specify a starting and ending point, but they
must be the same point because the unit circle is a closed curve.
If this point is (a, b) then using the FTLI the line integral equals
ψ(a, b)− ψ(a, b)− 0.

3. G = ∇φ with φ(x, y) = sin(x2y3), so the circulation around C must
be 0 because the unit circle is a closed curve.
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16.7 2D Curl

Think again of a vector field that represents the velocity of water flowing
in a shallow stream. If a pine needle falls into the stream (see margin)
with the velocity vectors all equal and perpendicular to the pine needle,
the needle will flow in the upward (positive-y) direction.

If instead the velocity vectors are unequal and as shown below left:

the pine needle will flow in the upward (positive-y) direction but at
the same time it will tend to rotate in the positive (counterclockwise)
direction (as shown above right) because the fluid is moving faster
on the right than the left, inducing a positive rotation. Similarly, the
pine needle depicted in the margin will tend to rotate in the negative
(clockwise) direction (while flowing upward). In both of these examples,
the vector field has the form ⟨0, Q⟩. In the example with positive “spin,”

the lengths of the vectors are increasing as x increases, so
∂Q
∂x

> 0. In

the example with negative spin,
∂Q
∂x

< 0.

If instead we consider vector fields of the form ⟨P, 0⟩, as depicted
here:

a positive spin is associated with P decreasing as y increases (above left),

so that
∂P
∂y

< 0, and a negative spin is associated with P increasing as y

decreases (above right), so that
∂P
∂y

> 0

Based on these examples, you might suspect that the tendency of a
pine needle (or a paddlewheel, such as the one shown in the margin) to
rotate in the positive direction in a vector field ⟨P, Q⟩ has something to
do with ∂Q

∂x and − ∂P
∂y being positive, while the tendency to rotate in the

negative direction has something to with these quantities being negative.
To investigate further, we will consider a more general situation.



contemporary vector calculus 1649

Circulation Around a Circle

Now imagine a paddlewheel with many, many “paddles.” A force
vector F acting at the tip of one of these paddles will exert a force of
magnitude F ·T in the tangential direction, contributing to the tendency
of the paddlewheel to rotate (in the positive direction if F · T > 0 and
in the negative direction if F · T < 0). Summing up these F · T values
for each paddle leads to a Riemann sum for the line integral of F · T
around the circular edge of the paddlewheel (the circulation).

(𝑎,𝑏)
ℎ

Let Ch be the (positively oriented) circle of radius h > 0 centered
at the point (a, b). To find the circulation of the vector field F(x, y) =
⟨P(x, y), Q(x, y)⟩ along this circle we need to compute:

�
Ch

F · T ds

If we parameterize the circle using r(t) = ⟨a + h cos(t), b + h sin(t)⟩ for
0 ≤ t ≤ 2π, then r′(t) = ⟨−h sin(t), h cos(t)⟩ so the integral becomes:

� 2π

0
F (a + h cos(t), b + h sin(t)) · ⟨−h sin(t), h cos(t)⟩ dt

For small values of h > 0, the point (x, y) will be close to (a, b), so we
can approximate the component functions of the vector field using:

P(x, y) ≈ P(a, b) + Px(a, b) · (x − a) + Py(a, b) · (y − b)

Q(x, y) ≈ Q(a, b) + Qx(a, b) · (x − a) + Qy(a, b) · (y − b)

Putting x = a + h cos(t) and y = b + h sin(t) this becomes:

P(a + h cos(t), b + h sin(t)) ≈ P(a, b) + Px(a, b) · h cos(t)) + Py(a, b) · h sin(t)

Q(a + h cos(t), b + h sin(t)) ≈ Q(a, b) + Qx(a, b) · h cos(t)) + Qy(a, b) · h sin(t)

so F (a + h cos(t), b + h sin(t)) · ⟨−h sin(t), h cos(t)⟩ is (approximately):

− P(a, b) · h sin(t)− Px(a, b) · h2 cos(t) sin(t)− Py(a, b) · h2 sin2(t)

+ Q(a, b) · h cos(t) + Qx(a, b) · h2 cos2(t) + Qy(a, b) · h2 sin(t) cos(t)

Integrating this quantity from 0 to 2π yields:

�
Ch

F · T ds ≈ πh2 [Qx(a, b)− Py(a, b)
]

The circulation around the circle Ch is (approximately) equal to the area
enclosed by the circle times the expression Qx(a, b)− Py(a, b), which
we now define to be the 2D curl of F at the point (a, b), writing:

curl2D(F)
∣∣∣
(a,b)

= Qx(a, b)− Py(a, b) = lim
h→0+

1
πh2 ·

�
Ch

F · T ds

For a circle of small radius, we can interpret the 2D curl as “circulation
per unit of area.” (Might this interpretation extend to other regions?)

Here we use these facts:
� 2π

0
cos(t) dt =

� 2π

0
sin(t) dt = 0

� 2π

0
sin(t) cos(t) dt = 0

� 2π

0
cos2(t) dt =

� 2π

0
sin2(t) dt = π
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Computing 2D Curl

Computing the curl of a 2D vector field is straightforward if you
remember the formula — which should look familiar, as it is the same
quantity we computed in the Mixed Partials Test for gradient fields! More on this soon (in the next section).

Example 1. If F(x, y) = ⟨xy, x + y⟩, compute curl2D (F) and evaluate it
at (1, 1), (1.8,−1) and (−1,−1).

Solution. Applying the 2D-curl formula:

curl2D (F) (x, y) =
∂

∂x
[x + y]− ∂

∂y
[xy] = 1 − x

and evaluating yields curl2D (F) (1, 1) = 0, curl2D (F) (1.8,−1) = −0.8
and curl2D (F) (−1,−1) = 2. ◀

What can you surmise about the behavior
of the vector field F from its 2D curl near
each of these points?

Practice 1. Compute curl2D (G) and curl2D (H), evaluating each at

(1, 1), (1, 0) and (−1,−1), if G(x, y) =
〈

x2, y2
〉

and H(x, y) =
〈

y2, x2
〉

.

Interpreting 2D Curl

If C is a small circle centered at (a, b) and F = ⟨P, Q⟩ has continuously
differentiable component functions near (a, b) then:

circulation of F around C ≈ curl2D(F)(a, b) · (area enclosed by C)
Because any area is always positive, this tells us that the curl of F at
(a, b) and the circulation of F along a circle of small radius centered at
(a, b) must have the same sign.

This implies that a paddlewheel of sufficiently small radius with its
center at (a, b) will rotate in the positive direction if curl2D (F) (a, b) > 0
(because, on average, F · T > 0 along C), and in the negative direction
if curl2D (F) (a, b) < 0 (because, on average, F · T < 0 along C).

0.9 1 1.1

0.9

1

1.1

Example 2. Interpret the results of Example 1 with the aid of a graph.

Solution. A graph of ⟨xy, x + y⟩ together with a small circle centered
at (1, 1) (see margin) reveals that, at any point on the circle, F · T
appears to be of equal value but opposite sign compared with F · T at a
symmetric point on the circle, so these values cancel: a paddlewheel
would not rotate. This agrees with the result that curl2D (F) (1, 1) = 0.

Near (1.8,−1) (see graph below left), |F · T| appears to be greater at
points where F · T < 0 than at corresponding points where F · T > 0:

1.7 1.8 1.9

−1.1

−1

−0.9

−1.1 −1 −0.9

−1.1

−1

−0.9
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which agrees with the fact that curl2D (F) (1.8,−1) < 0: a paddlewheel
would rotate in the negative (clockwise) direction. And near (−1,−1)
(above right), the opposite appears to be true, which agrees with the
fact that curl2D (F) (−1,−1) > 0: a paddlewheel would rotate in the
positive (counterclockwise) direction. ◀

These observations are not clearcut,
which demonstrates the value of comput-
ing the curl to determine the direction of
rotation (if any) of a paddlewheel.

Practice 2. Compute the 2D curl of the radial field G(x, y) = ⟨x, y⟩ and
the “swirl” field H(x, y) = ⟨−y, x⟩, then interpret these values with the
aid of a graph.

16.7 Problems

In Problems 1–12, compute the 2D curl of the given
vector field.

1. F(x, y) = ⟨x, y⟩ 2. G(x, y) = ⟨y,−x⟩
3. F(x, y) = ⟨y,−2x⟩ 4. G(x, y) = ⟨4, 9⟩
5. F(x, y) = ⟨−1 + 3x, 7 − 4y⟩
6. G(x, y) =

〈
−1 + 3x2, 7 − 4y2〉

7. F(x, y) = ⟨−1 + 3y, 7 − 4x⟩
8. G(x, y) =

〈
−1 + 3y2, 7 − 4x2〉

9. F(x, y) =
〈
2 − y3, π4 + x5〉

10. G(x, y) = ⟨sin(xy), cos(xy)⟩
11. F(x, y) =

〈
x3y2 + arctan(x), x2y3 − ln(y2 + 10)

〉
12. G(x, y) =

〈
(x + y)5 , (x − y)5

〉
In Problems 13–18, compute the 2D curl of the given
vector field and evaluate it at the given points.

13. F =
〈

x2 + 3y, 2y + x
〉

at (1, 1), (2,−1) and (1, 3)

14. G =
〈

xy2, x2y + 3
〉

at (3, 2), (0, 3) and (1, 4)

15. F = ⟨5x − 3y, x + 2y⟩ at (3, 2), (0, 3) and (1, 4)

16. G =
〈

x2 − y2, x2 + y2〉 at (2, 3), (−2, 2) and (3, 1)

17. F = ⟨−3y, x · y⟩ at (3, 2), (0, 3) and (1, 4)

18. G =
〈
e3, π2〉 at (2, 3), (−2, 2) and (3, 1)

In Problems 19–24, estimate whether the 2D curl
of the vector field at the indicated point is positive,
negative or approximately zero.

19.

1 2 3

1

2

3

20.

1 2 3

1

2

3
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21.

1 2 3

1

2

3

22.

1 2 3

1

2

3

23.

1 2 3

1

2

3

24.

1 2 3

1

2

3

In Problems 25–30, a few vectors of a vector field F
are shown near a point P. In each problem, draw
additional vectors so that:

(a) curl2D (F) (P) > 0

(b) curl2D (F) (P) < 0

(c) curl2D (F) (P) ≈ 0

25.

𝑃

26.

𝑃

27.

𝑃

28.

𝑃

29.

𝑃

30.

𝑃

In 31–35, compute the 2D curl of the vector field,
assuming f , g, φ and ψ are all differentiable.

31. F(x, y) = ⟨ f (x), g(y)⟩
32. G(x, y) = ⟨φ(y), ψ(x)⟩
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33. F(x, y) = ⟨ f (x) · φ(y), g(x) · ψ(y)⟩
34. G(x, y) = ⟨ f (x) + φ(y), g(x) + ψ(y)⟩
35. G(x, y) = ⟨ f (x + y), g(x − y)⟩
36. Show that, for constants a, b, c, α, β and γ, and

the vector field:

F(x, y) = ⟨c + ax + by, γ + αx + βy⟩

the circulation of F across any rectangle R (with
sides parallel to the coordinate axes) equals:

curl2D(F) · (area enclosed by R)

What must be true about the constants a, b, c, α,
β and γ if the circulation equals 0?

37. Given a vector field F(x, y) = ⟨P(x, y), Q(x, y)⟩
and a circle C with center A = (a, b) and small
radius, consider what would happen if you im-
posed a different coordinate system (u, v). Would
the value of the 2D curl of the vector field at A
change? What about the value of the circulation
of the vector field around the circle?

38. Given a vector field F(x, y) = ⟨P(x, y), Q(x, y)⟩
and a circle C with center A = (a, b) and small
radius, consider what would happen if you mea-
sured distances in mm instead of cm. How would
the value of 2D curl of the vector field at A
change? What about the value of the circulation
of the vector field around the circle?

16.7 Practice Answers

1. curl2D (G) (x, y) = 0 everywhere while curl2D (H) (x, y) = 2x − 2y
so therefore curl2D (H) (1, 1) = 0 and curl2D (H) (1, 0) = 2 while
curl2D (H) (−1,−1) = 0

2. curl2D (G) (x, y) = 0 everywhere, corresponding to graphs below,
which indicate no rotation in either direction at any point:

0.9 1 1.1

−0.1

0

0.1

−2.1 −2 −1.9

1.9

2

2.1

−1.6 −1.5 −1.4

−0.1

0

0.1

curl2D (H) (x, y) = 2 everywhere, corresponding to the graphs be-
low, which indicate positive rotation of a paddlewheel at any point:

0.9 1 1.1

−0.1

0

0.1

−2.1 −2 −1.9

1.9

2

2.1

−1.6 −1.5 −1.4

−0.1

0

0.1
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16.8 2D Curl Theorem

We have seen that, for a vector field F(x, y) = ⟨P(x, y), Q(x, y)⟩ (for
which P and Q have continuous derivatives near (a, b)) and a circle Ch

of small radius h > 0 centered at (a, b):

circulation of F along Ch ≈ curl2D(F(a, b)) · (area enclosed by Ch)

If this holds for more general closed curves C, and if the 2D curl of F is
roughly constant on R, the region enclosed by C, then we can write:

�
C

F · dr ≈ curl2D(F(a, b)) ·
�

R
1 dA

⇒
�

∂R
F · dr ≈

�
R

curl2D(F(a, b)) dA

Or, in differential form:
�

∂R
[P dx + Q dy] =

�
R

[
∂Q
∂x

− ∂P
∂y

]
(a,b)

dA

This might remind you of the 2D Divergence Theorem. You can, if
you wish, verify that this result does in fact hold for reasonably nice
vector fields on reasonably nice regions, first checking rectangles, then
checking more general simple regions, and finally noting that when
you splice together simple regions (as shown in the margin) the line
integral across adjacent boundaries cancels. Here, along adjacent sides,
the circulation flows one direction (“up”) along the right side of R1 and
the opposite direction (“down”) along the left side of R2. These are
in fact the same curve and computing the line integral along a curve
in the opposite direction multiplies the line integral by −1, so the line
integrals along these two adjacent sides cancel. But it turns out that
there is a much easier way to prove what we will now call the:

R1 R2

Remember that a C1 function is differ-
entiable and its derivatives are continu-
ous. Also remember that we are tacitly
assuming that our simple, closed bound-
ary curve ∂R is piecewise smooth.

The theorem applies to the unit circle,
x2 + y2 = 1 (which is closed), but not the
top half of that circle, y =

√
1 − x2.

2D Curl Theorem:

If: R is a finite union of closed, bounded simple regions in the
xy-plane with ∂R a simple, closed, positively oriented curve,
and F(x, y) = ⟨P(x, y), Q(x, y)⟩ with P and Q both
C1 functions on an open region containing R,

then: �
∂R

[P dx + Q dy] =
�

R

[
∂Q
∂x

− ∂P
∂y

]
dA

or, equivalently:
�

∂R
F · T ds =

�
R

curl2D(F) dA

Some comments about this result are in order.

• The boundary curve R must be closed for this theorem to apply.

• We will often use this theorem to find circulation when the circulation
integral is difficult to compute but the corresponding double integral
of the 2D curl of the vector field is easier to set up (or to work out).
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• In almost every other textbook you will encounter, this result is
called the “(circulation-curl form of) Green’s Theorem,” but “2D
Curl Theorem” is a much better name for a variety of reasons.

Proof. Let M = Q and N = −P so that:
�

∂R
[P dx + Q dy] =

�
∂R

[−N dx + M dy] =
�

∂R
[M dy − N dx]

This last integral is a flux integral, so we can apply the 2D Divergence
Theorem to get:
�

∂R
[M dy − N dx] =

�
R

[
∂M
∂x

+
∂N
∂y

]
dA =

�
R

[
∂Q
∂x

− ∂P
∂y

]
dA

which is what we needed to show.

This proof shows that the 2D Divergence
Theorem is, in some sense, equivalent to
the 2D Curl Theorem, but note that we
are applying each theorem to a different
(but related) vector field.

Example 1. Compute the line integral of F(x, y) = ⟨x − y, x⟩ along the
(positively oriented) circle x2 + y2 = 4.

Solution. If F is a gradient field, this is an easy problem, but applying
the Mixed Partials Test:

∂

∂x
(x)− ∂

∂y
(x − y) = 1 − (−1) = 2 ̸= 0

so F is not a gradient field. However, the circle x2 + y2 = 4 is a
closed curve (and is the boundary of D, the closed and bounded disk
x2 + y2 ≤ 4, which happens to be a simple region) so we can apply the
2D Curl Theorem:�

∂D
F · dr =

�
D

curl2D (F) dA =

�
D

2 dA = 2 · π · 22 = 8π

You could also evaluate the line integral the “long way” by parameter-
izing the circle using r(t) = ⟨2 cos(t), 2 sin(t)⟩ for 0 ≤ t ≤ 2π so that
r′(t) = ⟨−2 sin(t), 2 cos(t)⟩ and:

�
∂D

F · dr =
� 2π

0
⟨2 cos(t)− 2 sin(t), 2 cos(t)⟩ · ⟨−2 sin(t), 2 cos(t)⟩ dt

=

� 2π

0
[−4 sin(t) cos(t) + 4] dt = 8π

which agrees with the result of the 2D Curl Theorem. ◀

Practice 1. Compute the circulation of F(x, y) = ⟨y,−x⟩ along T , the
(positively oriented) triangle with vertices at (0, 0), (2, 0) and (2, 2).

Practice 2. Compute the circulation of F(x, y) = ⟨y,−x⟩ along any
positively oriented triangle in the xy-plane with base b and height h.

Example 2. If K is the (positively oriented) rectangle with opposing
vertices at (0, 0) and (2, 1), compute:

�
K

[
−y2 dx + x2y dy

]
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Solution. Applying the 2D Curl Theorem on the rectangular region D
where ∂D = K, this integral becomes:

�
D
[2xy − (−2y)] dA =

� x=2

x=0

� y=1

y=0
2y (x + 1) dy dx = 4

(Try evaluating the line integral directly to verify this answer.) ◀

Practice 3. If K is the rectangle from Example 2, compute:
�
K

[(
x2 − y2

)
dx +

(
x2y − 14y3

)
dy

]
Computing Area with the 2D Curl Theorem

The third is the average of the first two.

We can express the area of any “nice” 2D region R using the double
integral: �

R
1 dA

If the 2D curl of a vector field F = ⟨P, Q⟩ happens to equal 1 we could
use the 2D Curl Theorem to rewrite this area integral as:

�
R

1 dA =

�
R

curl2D (F) dA =

�
∂R

F · dr

There are many vector fields for which curl2D (F) = 1, including:

⟨0, x, ⟩ , ⟨−y, 0⟩ and
〈
−1

2
y,

1
2

x
〉

so if C is any simple closed curve in the xy-plane, then the area of the
region enclosed by C is equal to:

�
C

x dy =

�
C
−y dx =

�
C

[
−1

2
y dx +

1
2

x dy
]

In some situations, one or more of these line integrals might be easier
to evaluate than the original double integral.

Example 3. Compute the area of E , the elliptical region
x2

4
+

y2

25
≤ 1.

Solution. We can parameterize the boundary of this region, ∂E , using
r(t) = ⟨2 cos(t), 5 sin(t)⟩ ⇒ r′(t) = ⟨−2 sin(t), 5 cos(t)⟩ for 0 ≤ t ≤
2π. Applying the 2D Curl Theorem:
�

E
1 dA =

�
∂E

[
−1

2
y dx +

1
2

x dy
]

=

� 2π

0

[
−1

2
· 5 sin(t) (−2 sin(t)) +

1
2
· 2 cos(t) · 5 cos(t)

]
dt

= 5
� 2π

0

[
sin2(t) + cos2(t)

]
dt = 5

� 2π

0
1 dt = 5 · 2π = 10π

This agrees with the standard formula for the area of an ellipse. ◀ πab = π(2)(5) = 10π

Practice 4. Compute the area of the region enclosed by the curve traced
out by r(t) =

〈
cos3(t), sin3(t)

〉
for 0 ≤ t ≤ 2π.
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Regions with Holes

So far we have applied the 2D Divergence Theorem and 2D Curl
Theorem to regions without “holes.” Consider a region R that consists
of points inside one closed curve but outside of one or more other
closed curves contained inside the first (such as the region shown in the
margin). We can create a single curve that traverses the entire boundary
for R and consistently keeps the rightward-pointing unit normal vector
n pointing “away” from R as we traverse the curve in the direction of
its orientation by adding paths that connect the inner parts of ∂R to
the outer boundary of ∂R, as shown below:

To traverse the entire boundary, start at the bottom of the vertical
line segment, go up to the inner circle, around that circle once (in
the clockwise direction), then back down the vertical line segment,
and finally around the outer boundary curve (in the counterclockwise
direction). Note that, by going up the vertical line segment and then
back down, the line integral of any vector field along these two vertical
paths will cancel. Further note that the orientation of the inner circle
is clockwise so that when we move along this circle, the unit normal
vector n will point to the right.

Practice 5. For the region R shown in the margin, indicate the orienta-
tion of all boundary curves so that ∂R has positive orientation, then
add additional oriented curves as necessary to create one “super curve”
that traverses all of ∂R in the proper direction exactly once (and any
additional curves exactly twice, but in opposite directions).





A
Answers

Important Note about Precision of Answers: In many of the problems in this book you are required to read
information from a graph and to calculate with that information. You should take reasonable care to read the
graphs as accurately as you can (a small straightedge is helpful), but even skilled and careful people make
slightly different readings of the same graph. That is simply one of the drawbacks of graphical information.
When answers are given to graphical problems, the answers should be viewed as the best approximations we
could make, and they usually include the word “approximately” or the symbol “≈” meaning “approximately
equal to.” Your answers should be close to the given answers, but you should not be concerned if they differ
a little. (Yes those are vague terms, but it is all we can say when dealing with graphical information.)
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Section 16.1

1.

3.

5.

7.

9. One possibility: ⟨2, 0⟩ 11. ⟨−x,−y⟩

13. The only possibility:

〈
x√

x2 + y2
,

y√
x2 + y2

〉
15. ∇φ(x, y) =

〈
y2 − 2xy, 2xy − x2〉:

17. ∇φ(x, y) =
〈
3x2, 3y2〉:



A3

19. φx = 3x2 + 4 ⇒ φ = x3 + 4x + g(y) so that
φy = g′(y) = 6 ⇒ g(y) = 6y + C, hence
φ(x, y) = x3 + 4x + 6y works.

21.
∂Q
∂x

− ∂P
∂y

= 2x2 ̸= 0 so H is not a gradient field.

23. φ(x, y) = x · sin(y)

25. x(t) = 3t + A, y(t) = −2t + B

27. x(t) = 1
2 t2 + At + B, y(t) = t + A

29. x(t) = sin(t), y(t) = cos(t)

Section 16.2

1. P∆y − Q∆x = 5 · 5 − 12 · 0 = 25 3. P∆y − Q∆x = 5 · 0 − 12 · (−5) = 60

5. With P = −7, Q = 10 and y = 2 + x + x2 ⇒ dy = (1 + 2x) dx:

�
C
[P dy − Q dx] =

� 2

0
[−7 (1 + 2x)− 10] dx =

� 2

0
[−17 − 14x] dx =

[
−17x − 7x2

]2

0
= −62

7. With P = 2x, Q = 3y and x = 2 + y + y2 ⇒ dx = (1 + 2y) dy:

�
C
[P dy − Q dx] =

� 1

−2

[
2
(

2 + y + y2
)
− 3y (1 + 2y)

]
dy =

� 1

−2

[
4 − y − 4y2

]
dy =

3
2

9. With P = −y, Q = x, x = cos(t) ⇒ dx = − sin(t) dt and y = sin(t) ⇒ dy = cos(t) dt:

�
C
[P dy − Q dx] =

� π
2

0
[− sin(t) · cos(t)− cos(t) (− sin(t))] dt =

� π
2

0
0 dt = 0

11. With P = 2xy2, Q = 2x2y, x = t2 ⇒ dx = 2t dt and y = t3 ⇒ dy = 3t2 dt:

�
C
[P dy − Q dx] =

� 3

1

[
2t2

(
t3
)2 (

t2
)
− 2

(
3t2

)2
· t3 (2t)

]
dt =

� 3

1

[
6t10 − 4t8

]
dt = 87877.53

13. φ = x3y + 4xy2 ⇒ P = 3x2y + 4y2, Q = x3 + 8xy, so with y = 2x ⇒ dy = 2 dx:

�
C
[P dy − Q dx] =

� 2

0

[(
3x2 · 2x + 4 (2x)2

)
· 2 −

(
x3 + 8x · 2x

)]
dx =

� 2

0

[
11x3 + 16x2

]
dx =

260
3

15. With y = x ⇒ dy = dx for −2 ≤ x ≤ 3:
�
C
[5 dy − 3 dx] =

� 3

−2
2 dx = 10

17. With y = x ⇒ dy = dx for −2 ≤ x ≤ 3:
�
C
[7 dy + 5 dx] =

� 3

−2
12 dx = 60

19. With y =
7
4

x ⇒ dy =
7
4

dx for 0 ≤ x ≤ 4:
�
C
[x dy − y dx] =

� 4

0

[
x · 7

4
− 7

4
x
]

dx = 0

21. y = x2 + 7 ⇒ dy = 2x dx for −1 ≤ x ≤ 1:
�
C

[
x2 dy − y2 dx

]
=

� 1

−1

[
x2 · 2x −

(
x2 + 7

)2
]

dx = −1616
15

23. (a)
� 1

0
[2 · 6 − 5 · 3] dt = −3 (b)

� 1

0
[2 · 12t − 5 · 6t] dt =

� 1

0
−6t dt = −3
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Section 16.3

1. div (F) (x, y) = ∂x [x] + ∂y [y] = 1 + 1 = 2

3. div (F) (x, y) = ∂x [−y] + ∂y [x] = 0 + 0 = 0

5. ∂x [−1 + 3x] + ∂y [7 − 4y] = 3 − 4 = −1

7. ∂x [−1 + 3y] + ∂y [7 − 4x] = 0 + 0 = 0

9. ∂x
[
2 − x3]+ ∂y

[
pi4 + y5] = −3x2 + 5y4

11. div (F) (x, y) = 3x2y2 + 3x2y2 = 6x2y2

13. div (F) (x, y) = 2x + 2 so that div (F) (1, 1) = 4,
div (F) (2,−1) = 6 and div (F) (1, 3) = 4

15. div (F) (x, y) = 5 + 2 = 7 so div (F) (1, 1) = 7,
div (F) (2,−1) = 7 and div (F) (1, 3) = 7

17. div (F) (x, y) = 0 + x = x so div (F) (3, 2) = 3,
div (F) (0, 3) = 0 and div (F) (1, 4) = 1

19. div (F) > 0 21. div (F) ≈ 0 23. div (F) < 0

25. On your own.

27. 0 29. f ′(x) + ψ′(y)

31. Some possibilities:

(a)

𝑃

(b)

𝑃

(c)

𝑃

33. Some possibilities:

(a)

𝑃

(b)

𝑃

(c)

𝑃

35. Some possibilities:

(a)

𝑃

(b)

𝑃

(c)

𝑃
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37. Both would remain the same.

Section 16.4

1. If D is the interior of the circle, applying the 2D Divergence Theorem yields:
�
C

[
y2 dy − x2 dx

]
=

�
D

div
(〈

y2, x2
〉)

dA =

�
D

[
∂

∂x

(
y2
)
+

∂

∂y

(
x2
)]

dA =

�
D

0 dA = 0

3. If D is the interior of the unit circle, applying the 2D Divergence Theorem yields:
�
C
[5x dy − 8y dx] =

�
D

[
∂

∂x
(5x) +

∂

∂y
(8y)

]
dA =

�
D

13 dA = 13 · π · 12 = 13π

5. If R is the rectangular region with ∂R = C, applying the 2D Divergence Theorem yields:
�
C
[(17x − 5y) dy − (8x + 11y) dx] =

�
D
[17 + 11] dA = 28(13)(9) = 3276

7. If D is the interior of the circle, applying the 2D Divergence Theorem yields:
�
C

[
x3 dy − y3 dx

]
=

�
D

div
(〈

x3, y3
〉)

dA =

�
D

[
3x2 + 3y2

]
dA = 0

Using polar coordinates, this integral becomes:

� θ=2π

θ=0

� r=4

r=0
3r2 · r dr dθ =

� θ=2π

θ=0

[
3
4

r4
]r=4

r=0
dθ =

� 2π

0
192 dθ = 384π

9. Applying the 2D Divergence Theorem:

�
∂R

[
2x3 dy − 4y2 dx

]
=

�
R

[
6x2 + 8y

]
dA =

� x=1

x=0

� y=1−x

y=0

[
6x2 + 8y

]
dy dx =

11
6

11. Applying the 2D Divergence Theorem:
�

∂R

[
x2y dy − xy2 dx

]
=

� x=3

x=−3

� y=9−x2

y=0
4xy dA = 0

13. Applying the 2D Divergence Theorem:

�
∂R

[
x2y dy − y dx

]
=

�
R
[2xy + 1] dA =

� x=3

x=−3

� y=9−x2

y=0
[2xy + 1] dy dx = 36

15. If C is the unit circle and D its interior, applying the 2D Divergence Theorem:
�
C
[x dy − y dx] =

�
D
[2] dA = 2 · π · 12 = 2π

17. If C is the unit circle and D its interior, applying the 2D Divergence Theorem:

�
C

[
(x3 − 7y) dy − (8x + y3) dx

]
=

�
D

[
3x2 + 3y2

]
dA =

� 2π

0

� 1

0
3r2 · r dr dθ =

3π

2

19. The divergence of the vector field is −5 + 14 = 9 so the flux is 9 · 100π2 = 900π2.

21. 64 · π
(√

10
)2

= 640π.

23. By symmetry, the integral of y over a disk centered at the origin is 0.
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Section 16.5

1. F · T > 0 everwhere along curve A so the work should be positive.

3. F · T > 0 everwhere along curve C so the work should be positive.

5. F · T < 0 everwhere along curve A so the work should be negative.

7. F · T > 0 everwhere along curve C so the work should be positive.

9.
� 3

0
⟨2 + 3t, 2 + 7t⟩ · ⟨3, 4⟩ dt =

� 3

0
[14 + 37t] dt = 208.5

11. With r(t) = ⟨1 + t, 3 + 4t⟩ for 0 ≤ t ≤ 1:
� 1

0
⟨1 + t, 1 + t⟩ · ⟨1, 4⟩ dt =

� 1

0
[5 + 5t] dt = 7.5

13. With r(t) = ⟨3 cos(t), 3 sin(t)⟩ for 0 ≤ t ≤ π
2 :
� π

2

0
⟨cos(t), sin(t)⟩ · ⟨−3 sin(t), 3 cos(t)⟩ dt = 0

15. With r(t) = ⟨2 − t, 2 − t⟩ for 0 ≤ t ≤ 1:
� 1

0

〈
2 − t√

(2 − t)2 + (2 − t)2
,

2 − t√
(2 − t)2 + (2 − t)2

〉
· ⟨−1,−1⟩ dt =

� 1

0
−
√

2 dt = −
√

2

17. With r(t) = ⟨3 cos(t), 3 sin(t)⟩ for 0 ≤ t ≤ π
2 :
� π

2

0
⟨− sin(t), cos(t)⟩ · ⟨−3 sin(t), 3 cos(t)⟩ dt =

3π

2
19. With r(t) = ⟨2 − t, 2 − t⟩ for 0 ≤ t ≤ 1:

� 1

0

〈
−(2 − t)√

(2 − t)2 + (2 − t)2
,

2 − t√
(2 − t)2 + (2 − t)2

〉
· ⟨−1,−1⟩ dt =

� 1

0
0 dt = 0

21. With r(t) = ⟨4 cos(t), 4 sin(t)⟩ for 0 ≤ t ≤ 2π:
� 2π

0
⟨− sin(t), cos(t)⟩ · ⟨−4sin(t), 4 cos(t)⟩ dt = 8π

23. Along the bottom side of the square y = 0 ⇒ dy = 0, so the line integral evaluates to 0. Along the right
side, x = 1 ⇒ dx = 0 so here the integral becomes:

� y=1

y=0
[0 + 3y dy] =

[
3
2

y2
]1

0
=

3
2

Along the top side of the square y = 1 ⇒ dy = 0 so here the integral becomes:
� x=0

x=1
[5 · 1 dx + 0] = −5

And along the left side of the square x = 0 ⇒ dx = 0 so here the integral becomes:
� y=0

y=1
[0 + 3y dy] = −3

2

Summing these values yields 0 +
3
2
− 5 − 3

2
= −5.

25. Along the parabola portion of C, y = 1 − x2 ⇒ dy = −2x dx, so the line integral becomes:
� x=−1

x=1

[
5(1 − x2) + 3x(−2x)

]
dx =

� −1

1

[
5 − 11x2

]
dx

[
5x − 11

3
x3
]−1

1
= −8

3

And along the line-segment portion, y = 0 ⇒ dy = 0, so the line integral becomes:
� x=1

x=−1
[0 dx + 3x · 0] dx = 0

hence the value of the integral around the closed curve is −8
3

.
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27. With r(t) = ⟨3 cos(t), 2 sin(t)⟩ for 0 ≤ t ≤ 2π:
� 2π

0

[
8 sin3(t) (−3 sin(t)) + 27 cos3(t) · 2 cos(t)

]
dt =

45π

2

29.
� 10

0
5x dx +

� 12

0
(110 + 8y) dy +

� 0

10
(5x − 17 · 12) dx +

� 0

12
8y dy = 3360

31.
� L

0
αx dx +

� H

0
(γL + δy) dy +

� 0

L
(αxβH) dx +

� 0

H
δy dy = (γ − β) LH

33. With r(t) = ⟨4 cos(t), 4 sin(t)⟩ for 0 ≤ t ≤ 2π:
� 2π

0

[
64 cos3(t) (−4 sin(t)) + 64 sin3(t) · 4 cos(t)

]
dt = 0

35. With r(t) = ⟨4 cos(t), 4 sin(t)⟩ for 0 ≤ t ≤ 2π:
� 2π

0

[
64 sin3(t) (−4 sin(t)) + 64 cos3(t) · 4 cos(t)

]
dt = 0

37.
� 1

0
x3 dx +

� 1

0

(
1 + y3

)
dy +

� 0

1

(
2x3 + x

)
dx =

1
2

39. With r(t) =
〈
t, t2〉 for 1 ≤ t ≤ 2:

� 2

1
(1 + t)

√
1 + 4t2 dt ≈ 8.0772

41. With r(t) =
〈
t, t3〉 for 0 ≤ t ≤ 2:

� 2

0

(
1 + t3

)√
1 + 9t4 dt ≈ 40.9457

Section 16.6

1. φ(7, 6)− φ(1, 2) = 144

3. A potential function is φ(x, y) = 1
2 x4 + 5y so φ(3, 27)− φ(1, 3) = 160

5. The vector field is not conservative. With r(t) = ⟨10 + 10t, 10 + 20t⟩ for 0 ≤ t ≤ 1:

�
C

F · T ds =
� 1

0
⟨7, 4(10 + 10t)⟩ · ⟨10, 20⟩ dt = 1270

7. A potential function is φ(x, y) = x2 + y2 so the work done is φ(5, 1)− φ(1, 2) = 21

9. The vector field is not conservative. Along the line segment from A to B the work is 10.5; along the path
along the line semgment from A to (3, 2) followed by the line segment from (3, 2) to B the work is 16.5.

11. A potential function is φ(x, y) = x3y so the work done is φ(5, 1)− φ(1, 2) = 123

13. The vector field is the gradient of x4 + y5 so the line integral around the closed curve evaluates to 0.

15. The vector field is the gradient of x2 cos(y) so the line integral evaluates to
[

x2 cos(y)
](9,π)

(1,π)
= −80.

17. The vector field is the gradient of 2x3y2 so the line integral evaluates to 2 · 33 · 52 − 2 · 13 · 22 = 1342.

19. The vector field is the gradient of 2x2 + 5xy + y4 so the line integral evaluates to 20.

Section 16.7

1. ∂x (y)− ∂y (x) = 0 − 0 = 0

3. ∂x (−2x)− ∂y (y) = −2 − 1 = −3

5. ∂x (7 − 4y)− ∂y (−1 + 3x) = 0 − 0 = 0

7. ∂x (7 − 4x)− ∂y (−1 + 3y) = −4 − 3 = −7

9. ∂x
(
π4 + x5)− ∂y

(
2 − y3) = 5x4 + 3y2

11. 2xy3 − 2x3y

13. curl2D (F) (x, y) = 1 − 3 = −2 everywhere

15. curl2D (F) (x, y) = 1 − (−3) = 4 everywhere

17. curl2D (F) (x, y) = y − (−3) = y + 3 so that
curl2D (F) (1, 2) = 5, curl2D (F) (0, 3) = 6 and
curl2D (F) (1, 4) = 7

19. positive

21. (approximately) 0

23. negative
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25. Some possibilities:

(a)

𝑃

(b)

𝑃

(c)

𝑃

27. Some possibilities:

(a)

𝑃

(b)

𝑃

(c)

𝑃

29. Some possibilities:

(a)

𝑃

(b)

𝑃

(c)

𝑃

31. 0

33. g′(x) · ψ(y)− f (x) · φ′(y)

35. g′(x − y)− f ′(x + y)

37. Both would remain the same.
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