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12.3 ARC LENGTH AND CURVATURE OF SPACE CURVES 
 

In earlier sections we have emphasized the dynamic nature of vector–valued functions by considering them 

as the path of a moving object.  This is a very fruitful approach, but sometimes it is useful to consider a 

space curve as a static object and to investigate some of its geometric properties.  This section considers 

two geometric aspects of space curves:  arc length (how long is it along the curve from one point to another 

point?)  and curvature  (how quickly does the curve bend?).  
 

Arc Length 
 
In Section 9.4 we went through a careful derivation of an 

integral formula for finding the length of a parametric curve 

( x(t), y(t) )  from  t = a  to  t = b  (Fig. 1):  we   

(1) partitioned the interval  [ a, b]  for the variable  t  and 
found the points  ( x(ti), y(ti) ),  

(2) found the lengths of the line segments between consecutive  

 points along the curve 

(3) added the lengths of the line segments (an approximation of  

 the length of the curve) and got a Riemann sum 

(4) took the limit of the Riemann sum to an integral formula for  

 the length of the curve 
 
A very similar process also works for finding the length of a curve given by 

a vector–valued function in three dimensions, a space curve (Fig. 2), and 

we define the result of that process to be the length of a space curve. 
 
 
 Definition: Distance Along the Graph of a Vector–Valued Function   

  (Arc Length of a Space Curve) 
 
 If   r(t) = 〈 x(t), y(t), z(t) 〉  and  x '(t), y '(t), z '(t)  are continuous 

 then the distance traveled, L, along the graph of  r(t)  from  t = a  to  t = b  is 
 

 distance traveled L =  ⌡⌠
t=a

t=b
   ( dx

dt  )2 + ( 
dy
dt  )2 + ( dz

dt )2   dt   

 
 If we travel along each part of the curve  r(t)  exactly once, then the arc length of the  

 curve is the distance traveled: 

 arc length = distance traveled L  = ⌡⌠
t=a

t=b
   | r'(t) | dt  =  ⌡⌠

t=a

t=b
   | v(t) | dt  . 
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Example 1: Represent the length of the helix  r(t) = 〈 cos(t), sin(t), t 〉  from  

  t = 0  to  t = 2π.  (Fig. 3) 
 

Solution: L =  ⌡⌠
t=0

t=2π
  (–sin(t))2 + (cos(t))2 + (1)2    dt   

 

 = ⌡⌠
t=0

t=2π
  sin2(t) + cos2(t) + 1   dt  =  ⌡⌠

t=0

t=2π
  2    dt  =  2π 2   ≈  8.89 . 

(Actually, we can do this particular problem without calculus.  If we "unroll" the 

helix  (Fig. 4)  we get a right triangle with base  2π (the circumference of the 

circle with radius 1) and height  2π (the value of  z(t) when  t = 2π ).  The length 

of the helix is the length of the hypotenuse of this triangle:  hypotenuse = 

 (2π)2 + (2π)2   =  2π 2   . ) 
 

Practice 1: Represent the length of the graph of  r(t) = 〈 t, t2, t3 〉  from  t = 0  

to  t = 2  as an integral and use Simpson's Rule with  n = 20  to approximate the 

value of the integral. 
 

Example 2: Represent the length of the graph of  r(t) = 〈 cos(t), cos2(t), 0 〉  from  t = 0  to  t = 2π  as an 

 integral and use numerical integration on your calculator to approximate the value of the integral. 

 

Solution: The graph of  r(t) is part of a parabola  (Fig. 5), and the 

distance traveled along the parabola is 

 

  distance =  ⌡⌠
t=0

t=2π
  (–sin(t))2+(–2cos(t)sin(t))2+(0)2    dt  

 

   =  ⌡⌠
t=0

t=2π
  sin2(t) + 4cos2(t)sin2(t)    dt  ≈  5.916   (using numerical integration on a calculator). 

  
 But in this example, the distance is NOT the length of the graph.  As  t  goes from  0  to  π  we  

 travel along the parabola from the point  ( 1, 1, 0)  to the origin and on to ( –1, 1, 0).  As  t  goes  

 from  π  to  2π  we travel back along the parabola to the starting point  ( 1, 1, 0).  As  t goes from 0  

 to 2π we cover the parabola twice so the length of the parabola is half of the distance traveled:    
 

  length =  
1
2 ( distance travelled )  ≈  

1
2 ( 5.916 )  = 2.958 . 

 
 We could have calculated the length of the curve as the value of integral from  t = 0  to  t = π. 
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Parameterizing a Curve with respect to Arc Length 
 

So far in our dealings with parametric space curves and vector–valued functions we have treated the curves 

of functions of the variable  t  and often thought about  t  as representing time.  We have referred to the 

position vector  r(t) = 〈 x(t), y(t), z(t) 〉  as representing the position  ( x(t), y(t), z(t) )  of an object at time  

t.  With a space curve, however, it is sometimes more useful to represent a location on the curve as a 

function of "how far along the curve" we are.  For example, if we are giving someone directions to a good 

picnic spot in the mountains, we might describe the location (Fig. 6) as "drive 5.3 miles along the road from 

the turnoff"  indicating that the driver should travel  5.3 miles from the beginning of 

the mountain road.  This "how far along the road or curve" method avoids the 

obvious drawbacks of directions such as "drive 9 minutes at 35 miles per hour."  

Similarly, interstate highways are often marked with signs indicating how far we are 

from the the beginning of the road or the point where the road entered our state.  It is 

usually more useful to describe the location of a knot in a wire as "17 inches from 

the end of the wire."  That description does not depend on how fast we move along 

the wire or the orientation of the wire in space or even on the shape of the curve.  

The benefits of giving directions in terms of "how far along a road or wire" are the same for describing a 

location on a curve as "how far along the curve."  The description of locations along a curve in terms of 

distance along the curve is called a parameterization of the curve in terms of arc length. 
 
 
 Definition: Arc Length Function  s(t) 
 

 For a curve that begins at  r(a) = 〈 x(a), y(a), z(a) 〉  with continuous  x ', y '  and  z ', 

 the distance along the curve  r(t) = 〈 x(t), y(t), z(t) 〉  at time  t  is  the arc length  

 function  s(t)  with 
 

  s(t)  =  ⌡⌠
u=a

u=t
  ( dx(u)

du  )2 + ( 
dy(u)

du  )2 + ( dz(u)
du  )2    du  = ⌡⌠

u=a

u=t
   | r'(u) | du .  

    
 

 

Example 3: Fig. 7 illustrates the path r of a salmon swimming  

 up a river marked with dots at  1 mile intervals. 

 (a) Label the location of r(4) with an "X" for  r   

  parameterized in terms of arc length. 

 (b) Label the location of r(4) with an "O" for  r   

  parameterized in terms of time. 
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 (c) For an arc length parameterization, find  A  so   

  r(A) = bridge. 

 (d) During which time interval was the fish  

  swimming the fastest? 
 

Solution: (a) and (b)  Fig. 8 shows the correct locations  

  of the "X" and the "O." 

 (c) The bridge is 6 miles from the beginning of the river so  A = 6. 

 (d) The fish swims the greatest distance between  t = 4  and  t = 5, so it was swimming fastest 

during that 1 hour time interval. 
 
Practice 2: For the salmon in Fig. 7  

 (a) label the location of r(3) with an "S" for  r  parameterized in terms of arc length. 

 (b) Label the location of r(3) with an "T" for  r  parameterized in terms of time. 

 (c) For a time parameterization, find  B  so  r(B) = bridge. 

 (d) During which time interval was the fish swimming the slowest? 
 
 

For most curves, it is difficult to find a simple formula for the arc length function  s(t).  But sometimes we 

do get such a nice result for  s(t)  that we can solve for  t(s), t  in terms of  s,  and then we can rewrite the 

original parameterization  r(t) = 〈 x(t), y(t), z(t) 〉  as  r( t(s) ) = 〈 x( t(s) ), y( t(s) ), z( t(s) ) 〉  . 
 

Example 4: Write an arc length parameterization of the helix  r(t) = 〈 3t, 4cos(t), 4sin(t) 〉  using   

 r(0) = 〈 0, 0, 0 〉  as the starting point. 
 
Solution: r'(t) =  〈 3, –4sin(t), 4cos(t) 〉 for all t  so  
 

 | r'(t) | =  (3)2 + (–4sin(t))2 + (4cos(t))2    =  9 + 16sin2(t) + 16cos2(t)    = 5  for all t. 
 

 Then  s = s(t)   = ⌡⌠
u=0

u=t
   | r'(u) | du    = ⌡⌠

u=0

u=t
   5 du  =  5t  so  t = 

s
5   .  By substituting  t(s) = 

s
5   for  t,  

 
 the original parameterization   r(t) = 〈 3t, 4cos(t), 4sin(t) 〉  becomes   
 

 r( t(s)) ) = 〈 3t(s), 4cos( t(s) ), 4sin( t(s) ) 〉  = 〈 3 
s
5 , 4cos( 

s
5  ), 4sin( 

s
5  ) 〉 ,  a function of  s alone. 

 

Practice 3: Write an arc length parameterization of the line  r(t) = 〈 8t, t, 4t 〉  using   

 r(0) = 〈 0, 0, 0 〉  as the starting point. 
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The conversions from "time parameterization" to "arc length parameterization" in the example and practice 

problems were relatively easy because the object was moving along each curve at a constant speed ( | r'(t) | 
was constant ).  Usually this conversion is not that easy, but most of the time the arc length 

parameterization for a curve will be given so we will not need to translate to get from a "time 

parameterization" to an "arc length parameterization." 

 

Curvature  

 

Fig. 9 shows a space curve  r(t)   and unit tangent vectors  T(t) =  
r'(t)
|r'(t)|   at several equally spaced (in 

terms of arc length) points along  r(t).  When the curve twists and bends sharply in the left part of the 

graph, the unit tangent vectors change direction rapidly from point to point.  When the curve is almost 

straight and bends slowly, the unit tangent vectors also 

change direction slowly.  This geometric pattern between the 

"bendedness" of a curve and the rate of change (with respect 

to arc length) of the direction of the unit tangent vectors leads 

to our definition of the curvature of a space curve at a point. 

 
 
 Definition:  Curvature 
 
 If   r  is a space curve with unit tangent vector  T  and arc length parameterization  s, 

 then the curvature of  r  is 
 

  κ =  |  
d T
d s    | .     ( κ  is the Greek letter "kappa") 

    
 

The curvature of a space curve is defined to be the magnitude of the rate of change of direction of the unit 

tangent vectors with respect to arc length.  This definition of curvature is nicely motivated geometrically, 

but it is difficult to use for computations if we do not have an arc length parameterization of  r.  However, 

the Chain Rule and the Fundamental Theorem of Calculus provide us with an easier way to actually 

calculate the curvature of a space curve  r(t). 
 

By the Chain Rule,    
d T
d t    =    

d T
d s    . d s

d t    so  |  
d T
d s    | =  | 

d T/d t
d s/d t    | = | 

T'(t)
d s/d t  |.  From the Fundamental 

Theorem of Calculus and the definition of  s(t) = ⌡⌠
u=a

u=t
   | r'(u) | du , we know that 

d s(t)
d t    =  | r'(t) |.   

By putting these two results together, we get a much easier to use formula for the curvature of a space curve. 
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 A Formula for Curvature:   κ =  
 | T'(t) | 
| r'(t) |      

     
 

Example 5: For a positive number  A, the graph of  r(t) = 〈 A.cos(t), A.sin(t), 0 〉  is a circle with radius  

A  in the xy–plane.  Find the curvature of this circle. 
 

Solution: r'(t) = 〈 –A.sin(t), A.cos(t), 0 〉  so  | r'(t) | =  A2 sin2(t) + A2 cos2(t) + 0    =  A . 
 

 T(t) =  
r'(t)
|r'(t)|   =  

r'(t)
A   = 〈 –sin(t), cos(t), 0 〉  so  T'(t) = 〈 –cos(t), –sin(t), 0 〉  and  | T'(t) | = 1. 

 

 Then, for all t,  κ =  |  
T'(t)
r'(t)    |  =  

1
A   .  The curvature of a circle of radius  A  is  κ =  

1
A   . 

  
 This agrees with our geometric idea of curvature:   
 
 • when the radius of the circle is large (Fig. 10a),  the  

  circle bends slowly and the curvature  κ  is small 
 
 • when the radius of the circle is small (Fig. 10b),  the  

  circle bends quickly and the curvature  κ  is large. 
 

This pattern for curvature of circles leads to the definition of the  

radius of curvature of a curve. 

 
 

 Definition: The radius of curvature of  r(t)  is  
1

curvature of r(t)   =  
1
κ   . 

    

 
Practice 4: For  A, B, and C not equal to 0, show that the line  r(t) = 〈 At, Bt, Ct 〉  has curvature κ = 0. 
 
It was relatively straightforward to calculate the curvature in the example and practice problem because   

| r'(t) |  was a constant.  When  | r'(t) |  is not constant, it can be difficult to calculate   T'(t) , and some 

other formulas for curvature are often easier.  The following formula for curvature looks complicated, but 

in practice it is often the easiest one to use. 

 
 

 "Easiest" Formula for Curvature in 3D:   κ =    
| r' x r'' |

| r'|3   
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A proof that this formula follows from the formula  κ =  
 | T'(t) | 
| r'(t) |    is given in an appendix after the problem set. 

Example 6: Use the formula  κ =    
| r' x r'' |

| r'|3    to determine the curvature and the radius of curvature of    

r(t) = 〈 t, t2, t3 〉  when  t = 0, 1, and 2. 
 

Solution: r'(t) = 〈 1, 2t, 3t2 〉  so  | r'(t) | =  1 + 4t2 + 9t4    and  r''(t) = 〈 0, 2, 6t 〉 . 
 

 Then  r' x r'' =  ⎪
⎪
⎪

⎪
⎪
⎪i j k

1 2t 3t2

0 2 6t

  = i ⎪⎪
⎪

⎪⎪
⎪2t 3t2

2 6t
  – j ⎪⎪

⎪
⎪⎪
⎪1 3t2

0 6t
  + k ⎪

⎪
⎪
⎪1 2t

0 2    

 
    = (6t2)i  – (6t)j + (2)k   and 
 

 | r' x r'' | =  ( 6t2 )2 + ( –6t )2 + ( 2 )2    =   36t4 + 36t2 + 4   . 
 

 Putting this all together, we have  κ =  
 36t4 + 36t2 + 4

(1 + 4t2 + 9t4)3/2    . 

 

 When  t = 0,  κ =  
4

1    =  2  so the radius of curvature is  
1
2   . 

 

 When  t = 1,  κ =  
76

(14)3/2   ≈  0.166  so the radius of curvature is approximately  
1

0.166   ≈  6.02 .  

 

 When  t = 2,  κ =  
724

(161)3/2   ≈  0.013  so the radius of curvature is approximately  76.9.   

 
 For  r(t) = 〈 t, t2, t3 〉 , as  t grows larger (and is positive), the curvature  κ  becomes smaller. 

 

Practice 5: Use the formula  κ =    
| r' x r'' |

| r'|3    to determine the curvature of   

 r(t) = 〈 t, sin(t), 0 〉  when  t = 0, π/4, and π/2. 

 

Curvature in Two Dimensions:  r(t) = 〈 x(t), y(t), 0 〉   and  y = f(x) 
 

Every curve confined to the xy–plane can be thought of as a curve in space whose z–coordinate is always 0, 

and that approach leads to alternate formulas for the curvature of the graph. 
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If the curve we are dealing with is given parametrically in two dimensions as  ( x(t), y(t) ) then we can 

consider it as the vector–valued function  r(t) = 〈 x(t), y(t), 0 〉  in three dimensions, and the curvature 

formula  κ =    
| r' x r'' |

| r'|3     "simplifies"  to the following. 

 
 

 

 The graph of  ( x(t), y(t) )  has curvature  κ =  
 | x 'y" – x"y ' |

( (x ')2 + (y ')2 )3/2  

 
  where the derivatives of  x  and  y  are with respect to  t. 
    

 

If  y = f(x),  then the curve can be parameterized in two dimensions  using  x(t) = t  and  y(t) = f(x) = f(t). 

With this parameterization r(t) = 〈 x(t), y(t), 0 〉  = 〈 t, y(t), 0 〉 and we have  x '(t) = 1  and  x ''(t) = 0 so the previous 

pattern reduces to 
 

 

 If  y = f(x),  then   κ =  
 | y" |

( 1 + (y ')2 )3/2     where the derivatives are with respect to  x. 

    
 

These last two formulas for curvature are typically easier to use than the previous ones, but they are only 

valid for two–dimensional graphs. 

 
Example 7: Use the appropriate formula to determine the curvature of  y = x2  when  x = 0, 1 and 2. 

 

Solution: We can use the formula  κ =  
 | y" |

( 1 + (y ')2 )3/2    with  y ' = 2x  and  y " = 2.  Then 

 

 κ =  
 | 2 |

( 1 + (2x)2 )3/2    =  
2

(1 + 4x2)3/2   . 

 

 When  x = 0,  κ =  
2

(1 + 4x2)3/2   =  
2

(1)3/2   =  2.  When  x = 1,  κ =  
2

(1 + 4x2)3/2   =  
2

(5)3/2   ≈  0.179 . 

 

 When  x = 2,  κ =  
2

(1 + 4x2)3/2   =  
2

(17)3/2   ≈  0.029 . 

 
Practice 6: Use the appropriate 2–dimensional formula to determine the curvature of  y = sin(x)   

  when  x = 0, 1 and 2.  (Your answers should agree with your answers to Practice 5.) 
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PROBLEMS 
 
In problems 1 – 4, determine the length of the helices for  0 ≤ t ≤ 2π. 
 
1. r(t) = 〈 2.cos(t), 2.sin(t), t 〉   2. r(t) = 〈 3.cos(t), 3.sin(t), t 〉   
 
3. r(t) = 〈 4.cos(t), 4.sin(t), t 〉   4. r(t) = 〈 R.cos(t), R.sin(t), t 〉   
 

In problems 5 – 12, determine the length of the "modified helices" for  0 ≤ t ≤ 2π.  If necessary, use a calculator to 

approximate the arc length integrals. 
 
5. r(t) = 〈 2.cos(t), 3.sin(t), t 〉   6. r(t) = 〈 2.cos(t), 5.sin(t), t 〉   
 
7. r(t) = 〈 A.cos(t), B.sin(t), t 〉   8. r(t) = 〈 cos(2t), sin(2t), t 〉   
 
9. r(t) = 〈 t.cos(t), t.sin(t), t 〉   10. r(t) = 〈 2t.cos(t), 2t.sin(t), t 〉     
 
11. r(t) = 〈 2t.cos(t), t.sin(t), t 〉   12. r(t) = 〈 t2.cos(t), t2.sin(t), t 〉   
 

In problems 13 – 16, determine the length of the Bezier curves for  0 ≤ t ≤ 1.  If necessary, use a calculator to 

approximate the arc length integrals. 
 
13. r(t) = 〈 3(1–t)2t + 3(1–t)t2 , 9(1–t)t2 +2 t3 , (1–t)3 + 6(1–t)2t   〉   
 
14. r(t) = 〈 2(1–t)3 + 6(1–t)t2 , 3(1–t)2t + 3(1–t)t2 + 3t3 , 3(1–t)2t + 3(1–t)t2  〉   
 
15. The Bezier curve determined by the control points  P0 = ( 2, 0, 0),  P1 = ( 0, 1, 1),  P2 = ( 2, 1, 1),   

 and  P3 = ( 0, 3, 0). 
 
16. The Bezier curve determined by the control points  P0 = ( 2, 0, 0),  P1 = ( 0, 3, 2),  P2 = ( 2, 0, 3),   

 and  P3 = ( 0, 3, 0). 
 

In problems 17 – 22, determine the curvature of the given curves at the specified points.  
 
17. r(t) = 〈 cos(t), sin(t), t 〉  when  t = 0, π/4, and  π/2 . 
 
18. r(t) = 〈 3.cos(t), 3.sin(t), t 〉  when  t = 0, π/4, and  π/2 . 
 
19. r(t) = 〈 R.cos(t), R.sin(t), t 〉  when  t = 0, π/4, and  π/2 . 
 
20. r(t) = 〈 5 + 3t, 2 – t, 3 – 2t 〉  when  t = 0, 2, and  7 . 
 
21. r(t) = 〈 3(1–t)2t + 3(1–t)t2 , 9(1–t)t2 +2 t3 , (1–t)3 + 6(1–t)2t   〉  when  t = 0.2  and  0.5 . 
 
22. r(t) = 〈 2(1–t)3 + 6(1–t)t2 , 3(1–t)2t + 3(1–t)t2 + 3t3 , 3(1–t)2t + 3(1–t)t2  〉  when  t = 0.2  and  0.5 . 



12.3  Arc Length and Curvature of Space Curves Contemporary Calculus 10 

 

In problems 23 – 26, determine the curvature and the radius of curvature of the given curves at the specified points.  
 
23. r(t) = 〈 3.cos(t), 5.sin(t) 〉  when  t = 0, π/4, and  π/2 . 
 
24. r(t) = 〈 2.cos(t), 7.sin(t) 〉  when  t = 0, π/4, and  π/2 . 
 
25. r(t) = 〈 A.cos(t), B.sin(t) 〉  when  t = 0, π/4, and  π/2 . 
 
26. r(t) = 〈 t.cos(t), t.sin(t) 〉  when  t = 1, 2, and  3 . 
 
27. Determine the curvature of  y = 3x + 5  when  x = 1, 2, and  3.  For what value of  x  is the curvature  

 of  y = 3x + 5  maximum?  
 
28. Determine the curvature of  y = Ax + B  when  x = 1, 2, and  3.  For what value of  x  is the curvature  

 of  y = Ax + B  maximum? 
 
29. Determine the curvature of  y = x2  when  x = 1, 2, and  3.  For what value of  x  is the curvature of   

 y = x2  maximum?  For what value of   x  is the radius of curvature  of  y = x2  minimum? 
 
30. Determine the curvature of  y = x3 – x  when  x = 0, 1, and  2.  For what value of  x  is the curvature of   

 y = x3 – x  maximum?  For what value of   x  is the radius of curvature  of  y = x3 – x  minimum? 

 

 

 

Practice Answers 
 

Practice 1: | r'(t) | =  12 + (2t)2 + ( 3t2 )2    =  1 + 4t2 + 9t4   .  Then 
 

 L =  ⌡⌠
t=0

t=2
   | r'(t) | dt=  ⌡⌠

t=0

t=2
  1 + 4t2 + 9t4   dt  ≈  9.57  (using Simpson's Rule with n = 20). 

 
Practice 2: (a) and (b)  Fig. 11 shows the correct locations  

  of the "S" and the "T." 

(c) The bridge is 8 hours from the beginning of the river so  B = 8. 

(d) The fish swims the smallest distance between   

 t = 2  and  t = 3, so it was swimming slowest  

 during that 1 hour time interval. 
 
 
 
 



12.3  Arc Length and Curvature of Space Curves Contemporary Calculus 11 

Practice 3: | r'(t) | =  (8)2 + (1)2 + (4)2   = 9  for all t. 
 

 Then  s = s(t)   = ⌡⌠
u=0

u=t
   | r'(u) | du    = ⌡⌠

u=0

u=t
   9 du  =  9t  so  t = 

s
9   .  By substituting  t(s) = 

s
9   for  t,  

 
 the original parameterization   r(t) = 〈 8t, t, 4t 〉  becomes   
 

 r( t(s)) ) = 〈 8t(s), t(s) , 4t(s) 〉  = 〈 8 
s
9 ,  

s
9  , 4 

s
9   〉 ,  a function of  s alone. 

 

Practice 4: r'(t) = 〈 A, B, C 〉  so  | r'(t) | =  A2 + B2 + C2   . 
 

 T(t) =  
r'(t)
|r'(t)|   =  

1

A2 + B2 + C2  〈 A, B, C 〉  which is a constant vector  so  T'(t) = 0 . 

 

 Then, for all t,  κ =  |  
T'(t)
r'(t)    |  =  

0

A2 + B2 + C2   = 0 .   

 The curvature of a the line  r(t) = 〈 At, Bt, Ct 〉  is  κ = 0  . 
 

Practice 5: r'(t) = 〈 1, cos(t), 0 〉  so  | r'(t) | =  1 + cos2(t)    and  r''(t) = 〈 0, –sin(t), 0 〉 . 
 

 Then  r' x r'' =  
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪i j k

1 cos(t) 0
0 –sin(t) 0

  = 0i  – 0j + (–sin(t))k   and  | r' x r'' | =  | –sin(t) |. 

 

 Putting this together, we have  κ =  
| –sin(t) |

( 1 + cos2(t) )3/2   . 

 

 When  t = 0,  κ =  
0

( 1 + 1 )3/2   =  0 .    When  t = π/4,  κ =  
2/2

( 1 + 1/2)3/2   ≈  0.385  .  

 

 When  t = π/2,  κ =  
1

( 1 + 0 )3/2   = 1   

 
Practice 6: y = sin(x),  y '(x) = cos(x),  and  y ''(x) = –sin(x).  Then   
 
 

 κ =  
 | y" |

( 1 + (y ')2 )3/2     =  
| –sin(x) |

( 1 + cos2(x) )3/2     which is the same result we got in Practice 5. 
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Appendix:  A proof that  κ =  
 | T'(t) | 
| r'(t) |     =   

 | r' x r'' |
| r' |3     

 

Since  T(t) =  
r'(t)

| r'(t) |   and  | r'(t) | = 
d s
d t   we know that  r'(t) = | r'(t) | T(t) =  

d s
d t   T(t) .   

 

Then, by the Product rule for Derivatives,  r''(t)  =  
d

d t  {   
d s
d t   T(t) }  =  

d2 s
d t2

  T(t) + 
d s
d t  T'(t) . 

 

Replacing  r'  and  r''  with these results and using the distributive pattern  Ax(B + C) = AxB + AxC  for 

the cross product, we have 
 

r' x r'' =    
d s
d t   T(t) x {   

d2 s
d t2

  T + 
d s
d t  T' } =  

ds
dt 

d2s
dt2

   { T x T } +  { 
ds
dt  }2{ T x T' } . 

 

We know for every vector  V that V x V = 0  (the zero vector) so T x T = 0 . 

We also know that  | T(t) | = 1  for all  t  so from Example 3 of Section 12.2 we can conclude that  T  is 

perpendicular to  T' .  Then  | T x T' | = | T | | T' | | sin(θ) |  = | T | | T' | = | T' | .  Using these results  

together with the previous result for  r' x r''  we have 
 

| r' x r'' |  =  { 
ds
dt  }2

 | T' | =  | r' |2 | T' |   so  | T' |  =    
 | r' x r'' | 

| r' |2    . 

 

Finally,  
 | T' | 
| r' |    =  

 | r' x r'' | 
| r' |3    , the result we wanted. 

 

 


