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9.3 PARAMETRIC EQUATIONS 
 

Some motions and paths are inconvenient, difficult or impossible for us to describe 

by a single function or formula of the form y = f(x).    
 

• A rider on the "whirligig"  (Fig. 1) at the carnival goes in circles at the end 

of a rotating bar. 

• A robot delivering supplies in a factory (Fig. 2) needs to avoid obstacles. 

• A fly buzzing around the room (Fig. 3) and a molecule in a solution follow  

 erratic paths. 

• A stone caught in the tread of a rolling wheel has a smooth path with some 

sharp corners (Fig. 4). 
 

Parametric equations provide a way to describe all of these motions and paths.  And 

parametric equations generalize easily to describe paths and motions in 3 dimensions. 
 

Parametric equations were used briefly in earlier sections  (2.5: Applications of the Chain 

Rule and  5.2: Arc Length).  In those sections the equations were always given.  In this 

section we look at functions given parametrically by data, graphs, and 

formulas and examine how to build formulas to describe some motions 

parametrically.  The last curve in this section is the cycloid, one of the 

most famous curves in mathematics.  The next section considers 

calculus with parametric equations: slopes of tangent lines, arc lengths, 

and areas. 
 

Parametric equations describe the location of a point  (x,y)  on a graph or path as 

a function of a single independent variable  t, a "parameter" often representing 

time.  In 2 dimensions, the coordinates  x  and  y  are functions of the variable t:  

x = x(t)  and  y = y(t)  (Fig. 5).  In 3 dimensions, the  z  coordinate is also a 

function of  t:  z = z(t).  With parametric equations we can also analyze the 

forces acting on an object separately in each coordinate direction and then 

combine the results to see the overall behavior of the object.  Parametric 

equations often provide an easier way to understand and build equations for complicated motions. 

 
Graphing Parametric Equations 
 

The data for creating a parametric equation graph can be given as a table of values, as graphs of  (t, x(t) )  

and  (t, y(t) ), or as formulas for  x  and  y  as functions of  t. 
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Example 1: Table 1 is a record of the location of a roller coaster car 

relative to its starting location.  Use the data to sketch a 

graph of the car's path for the first 7 seconds.  
 

Solution: Figure 6 is a plot of 

 the ( x, y) locations of the car 

 for  t = 0  to  7 seconds.  The 

 points are connected by a 

 smooth curve to show a 

 possible path of the car. 
 

Practice 1: Use the data in Table 1 to sketch the path of the  

 roller coaster for the next 6 seconds. 
 

Note:  Clearly the graph in Fig. 6 is not the graph of a function y = f(x).  But every y = f(x) function has  

 an easy parametric representation by setting  x(t) = t and y(t) = f(t). 

 

Sometimes a parametric graph can show patterns that are not clearly visible in individual graphs. 
 

Example 2: Figures 7a  and  7b  are graphs of the populations of rabbits and foxes on an island.  Use 

these graphs to sketch a parametric graph of rabbits (x–axis) versus foxes (y–axis)  for   

 0 ≤ t ≤ 10 years. 
 

Solution: The separate rabbit and fox population graphs give us information about each population 

separately, but the parametric graph helps us see the effects of the interaction between the rabbits and 

the foxes more clearly. 
 

For each time  t  we can read the rabbit and fox 

populations from the separate graphs (e.g., when  t = 1, 

there are approximately 3000 rabbits and  400 foxes so x 

≈ 3000 and y ≈ 400) and then combine this information to 

plot a single point on the 

parametric graph.  If we 

repeat this process for a 

large number of values of t, we get a graph (Fig. 8) of the "motion" of 

the rabbit and fox populations over a period of time, and we can ask 

questions about why the populations might show this behavior.   

t   x(t)    y(t)

0     0      70  
1    30      20  
2    70      50  
3    60      75  
4    30      70  
5    32      35  
6    60      15  

7     90      55  
8    105      85  
9    125     100  

10    130      80  
11    150      65  
12    180      75  
13    200      30  

t   x(t)     y(t)

Table 1
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The type of graph in Fig. 8 is very common for "predator–prey" interactions.  

Some two–species populations tend to approach a "steady state" or "fixed point" 

(Fig. 9).  However, many two–species population graphs tend to cycle over a 

period of time as in Fig. 9.   

 

Practice 2: What would it mean if the rabbit–fox 

 parametric equation graph hit the 

 horizontal axis as in Fig. 10? 
 

Example 3: Graph the pair of parametric equations  x(t) = 2t – 2   

 and  y(t) = 3t + 1. 
 

Solution: Table 2  shows the values of  x  and  y  for several 

  values of  t.  These points are plotted in Fig. 11, and 

     the graph appears to be a straight line. 
 

Usually it is not possible to write  y  as a simple function of  x, but in 

this case we can do so.  By solving  x = 2t – 2 for   

t = 
1
2  x + 1 and then replacing the  t  in the equation  y = 3t + 1, 

 

we get  y = 3t + 1 = 3{ 
1
2  x + 1 } + 1 = 

3
2  x + 4,   a linear function of  x. 

 
Practice 3: Graph the pair of parametric equations  x(t) = 3 – t  and   

          y(t) = t2 + 1.  Write  y  as a function of x alone and identify the  

         shape of the graph. 
 
Example 4: Graph the pair of parametric equations  x(t) = 3.cos(t)  and  y(t) = 2.sin(t)  for  0 ≤ t ≤ 2π, 
 

 and show that these equations satisfy the relation  
x2
9    + 

y2
4    = 1  for all values of  t. 

 
Solution: The graph, an ellipse, is shown in Fig. 12.    
  

   
x2
9    + 

y2
4    =  

32.cos2(t)
9    +  

22.sin2(t)
4    =  cos2(t) + sin2(t) = 1. 

 

Practice 4: Graph the pair of parametric equations  x(t) = sin(t)  and   

 y(t) = 5.cos(t)  for  0 ≤ t ≤ 2π, and show that these equations  
  

 satisfy the relation   
x2
1    + 

y2
25   = 1   for all values of  t. 

 

t    x(t)    y(t)

0    –2     1
1     0     4
2     2     7

–1   –4    –2

Table 2
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Example 5: Describe the motion of a point whose position is   

 x(t) = –R.sin(t)  and y(t) = –R.cos(t). 
 

Solution:  The point starts at  x(0) = –R.sin(0) = 0  and  y(0) = –R.cos(0) = –R.  

By plotting  x(t)  and  y(t)  for several other values of  t  (Fig. 13), we can see 

that the point is rotating clockwise around the origin.  Since   

 x2(t) + y2(t) = R2 sin2(t) + R2 cos2(t) = R2,  we know the point is  

 always on the circle of radius  R which is centered at the origin. 
 

Practice 5: The path of each parametric equation given below is a circle with radius 1 and center at the 

origin.  If an object is located at the point  (x, y) at time  t seconds: 

 (a)  Where is the object at  t = 0?  (b) Is the object traveling clockwise or counterclockwise around the 

circle?  (c) How long does it take the object to make 1 revolution? 

 A: x = cos(2t), y = sin(2t)     B:  x = – cos(3t), y = sin(3t)     C:  x = sin(4t),  y = – cos(4t) 

 
Putting Motions Together 
 

If we know how an object moves horizontally and how it moves vertically, then we can put these motions 

together to see how it moves in the plane. 
 

If an object is thrown straight upward with an initial velocity of  A  feet per second, then its height after  t  

seconds is  y(t) = A. t – 
1
2  g. t2  feet  where  g = 32 feet/second2 is the downward acceleration of gravity 

(Fig. 14a).  If an object is thrown horizontally with an initial velocity of  B  feet per second, then its 

horizontal distance from the starting place after  t  seconds is  x(t) = B. t  feet  (Fig. 14b).   

 
Example 6: Write an equation for the position at time  t  (Fig. 14c)  of an object thrown at an angle of   

 30° with the ground (horizontal) with an initial velocity  100 feet per second. 
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Solution: If the object travels  100 feet along a line at an angle of  

30°  to the horizontal ground (Fig. 15), then it travels   

 100.sin(30°) = 50  feet upward and 100.cos(30°) ≈ 86.6 

feet sideways,  so  A = 50  and  B = 86.6 .  The position 

of the object at time  t  is   

     y(t) = 50. t – 
1
2  g t2  and  x(t) = 86.6. t .   

 

Practice 6: A ball is thrown upward at an angle of 45°  (Fig. 16)  with an  

  initial velocity of 40 ft/sec.  

  (a)  Write the parametric equations for the position of the ball as 

       a function of time.   

  (b)  Use the parametric equations to find when and then where 

        the ball will hit the sloped ground.  (Suggestion:  set   

       y(t) = – 0.5x(t)  from part  (a)  and solve for  t.  Then use that  

       value of  t  to evaluate  x(t)  and  y(t).) 

 

Sometimes the location or motion of an object is measured by an instrument which is in motion itself (e.g., 

tracking a pod of migrating whales from a moving ship), and we want to determine the path of the object 

independent of the location of the instrument.  In that case, the "absolute" location of the object with 

respect to the origin is the sum of the relative location of the object (pod of whales) with respect to the 

instrument (ship) and the location of the instrument (ship) with respect to the origin.  The same approach 

works for describing the motion of linked objects such as connected gears. 
 

Example 7: Carnival Ride The car (Fig. 17)  makes one counterclockwise revolution (r = 8 feet) 

about the pivot point  A  every 2 seconds and the long arm (R = 20 feet) makes one counterclockwise 

revolution about its pivot point  (the origin)  every 5 seconds.  Assume that the ride begins with the 

two arms along the positive x–axis and sketch the path you think the car will follow.  Find a pair of 

parametric equations to describe the position of the car at time  t. 
 
 

Solution: The position of the car relative to its pivot point   A  is 

      xc(t) = 8.cos( 
2π
2   t)  and  yc(t) = 8.sin( 

2π
2   t).   

 The position of the pivot point  A  relative to the origin  is   

      xp(t) = 20.cos( 
2π
5   t )  and  yp(t) = 20.sin( 

2π
5   t ), so the 

location of the car, relative to the origin, is   
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  x(t) = xp(t) + xc(t) = 20.cos( 
2π
5   t ) + 8.cos( 

2π
2   t)   and   

  y(t) = yp(t) + yc(t) = 20.sin( 
2π
5   t ) + 8.sin( 

2π
2   t) . 

 Use a graphing calculator to graph  the path of the car for 5 seconds. 

 

Example 8: Cycloid A light is attached to the edge of a 

wheel of radius  R  which is rolling along a level road  

(Fig. 18).  Find parametric equations to describe the 

location of the light. 
 

Solution:  We can describe the location of the axle of the wheel, the location of the light relative to the axle,  

 and then put the results together to get the location of the light. 
 
 The axle of the wheel is always  R  inches off the ground, so the  y  coordinate of the axle is  ya(t) = R  

(Fig. 19).  When the wheel has rotated  t  radians about its axle, the wheel has rolled a distance of  R. t  
along the road, and the  x  coordinate of the axle is  xa(t) = R. t .   

 The position of the light relative to the axle is  xl(t) =  –R.sin(t)  and  yl(t) = –R.cos(t)  (see Example 

3)  so the position of the light is   
 
  x(t) = xa(t) + xl(t) = R. t – R.sin(t) = R.{ t – sin(t) }  and   

  y(t) = yat) + yl(t) = R – R.cos(t) = R.{ 1 – cos(t) } . 
 

 This curve is called a cycloid, and it is one of the most famous and interesting curves in mathematics.  

Many great mathematicians and physicists (Mersenne, Galileo, Newton, Bernoulli, Huygens, and 

others) examined the cycloid, determined its properties, and used it in physical applications. 
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Practice 7: A light is attached  r  units from the axle of an R inch radius wheel   

 (r < R) that is rolling along a level road  (Fig. 20).  Use the approach of the  

 solution to  Example 8  to find parametric equations to describe the location  

 of the light.  The resulting curve is called an curate cycloid. 
 

The cycloid, the path of a point on a rolling circle, was studied in the early 1600's by 

Mersenne (1588–1648) who thought the path might be part of an ellipse (it isn't).    

In 1634 Roberval determined the parametric form of the cycloid and found the area under the cycloid as did 

Descartes and Fermat.  This was done before Newton (1642–1727) was even born; they used various 

specialized geometric approaches to solve the area problem.  About the same time Galileo determined the 

area experimentally by cutting a cycloid region from a sheet of lead and balancing it against a number of 

circular regions (with the same radius as the circle which 

generated the cycloid) cut from the same material.  How 

many circles do you think balanced the cycloid region’s  

area (Fig. 21)? 
 

However, the most amazing properties of the cycloid involve 

motion along a cycloid–shaped path, and their discovery had  

to wait for Newton and the calculus.  These calculus–based properties are discussed at the end of the next 

section. 

 

PROBLEMS 
 

For problems 1–4, use the data in each table to create three graphs: 

(a)  (t, x(t)),  (b)  (t, y(t)),  and  (c)  the parametric graph  (x(t), y(t) ).  

(Connect the points with straight  

line segments to create the graph.) 
 
1. Use Table 3. 2. Use Table 4. 
 
3. Use Table 5. 4. Use Table 6. 
 

Table 3

t    x(t)   y(t)

0     2      1
1     2      0

3     1     –1
2    –1      0

 Table 4

t    x(t)   y(t)

0     0      1
1     1      1

3     2      0
2     1     –1

 

Table 5

t    x(t)   y(t)

0     1      2
1    –1     –1

3     0      2
2     1      2

 Table 6

t    x(t)   y(t)

0     0      1
1    –1      0

3     3      1
2     0     –2
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For problems  5–8, use the data in the given graphs of  (t, x(t))  and  (t, y(t))  to sketch the parametric graph  

(x(t), y(t)). 
 
5. Use  x  and  y  from  Fig. 22.  
 
6. Use  x  and  y  from  Fig. 23. 
 
7. Use  x  and  y  from  Fig. 24.  
 
8. Use  x  and  y  from  Fig. 25. 
 
 
9. Graph  x(t) = 3t – 2  ,  y(t) = 1 – 2t.  What shape is this graph?  
 
10. Graph  x(t) = 2 – 3t  ,  y(t) = 3 + 2t.   

 What shape is this graph? 

 

11. Calculate the slope of the line through the points  

 P = (x(0), y(0))  and  Q = (x(1), y(1) )  for  x(t) = at + b   

 and  y(t) = ct + d. 
 

12. Graph  x(t) = 3 + 2.cos(t)  ,  y(t) = –1 + 3.sin(t) for    

 

! 

0 " t " 2# .  Describe the shape of the graph. 
 
13. x(t) = –2 + 3.cos(t)  ,  y(t) = 1 – 4.sin(t) for 

! 

0 " t " 2# .   

 Describe the shape of  the graph. 
 

14. Graph  (a) x(t) = t2  ,  y(t) = t,  (b)  x(t) = sin2(t)  ,  y(t) = sin(t),   and   

 (c) x(t) = t, y(t) = t .  Describe the similarities and the differences among  

 these graphs. 
 

15. Graph  (a) x(t) = t  ,  y(t) = t,  (b) x(t) = sin(t)  ,  y(t) = sin(t), and  (c) x(t) = t2, y(t) = t2.   

 Describe the similarities and the differences among these graphs. 
 

16. Graph  x(t) = (4 – 
1
t   )cos(t),  y(t) = (4 – 

1
t   )sin(t)  for  t ≥ 1.  Describe the behavior of the graph. 

 

17. Graph  x(t) = 
1
t  .cos(t),  y(t) = 

1
t  .sin(t)  for  t ≥ π/4.  Describe the behavior of the graph. 

 

18. Graph  x(t) = t + sin(t),  y(t) = t2 + cos(t)  for  

! 

0 " t " 2# .  Describe the behavior of the graph. 
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Problems  19–22 refer to the rabbit–fox population graph shown 

in Fig. 26  which shows several different population cycles 

depending on the various numbers of rabbits and foxes.  Wildlife 

biologists sometimes try to control animal populations by 

"harvesting" some of the animals, but it needs to be done with 

care.  The thick dot on the graph is the fixed point for this two–

species population. 
 

19. Suppose there are currently  11,000 rabbits and 200 foxes  

(point A on the graph), and 1,000 rabbits are "harvested" (removed from the population).  Does the 

harvest shift the populations onto a cycle closer to or farther from the fixed point? 
 

20. Suppose there are currently  10,000 rabbits and 300 foxes  (point B on the graph), and 100 foxes are 

"harvested."  Does the harvest shift the populations onto a cycle closer to or farther from the fixed point? 
 

21. Suppose there are currently 8,000 rabbits and 250 foxes  (point C on the graph), and 1,000 rabbits die 

during a hard winter.  Does the wildlife biologist need to take action to maintain the population 

balance?  Justify your response. 
 

22. Suppose there are currently 9,000 rabbits and 500 foxes  (point D on the graph), and 2,000 rabbits die 

during a hard winter.  Does the wildlife biologists need to take action to maintain the population 

balance?  Justify your response. 
 

23. Suppose  x  and  y  are functions of the form  x(t) = a.t + b  and y(t) = c.t + d  with  a ≠ 0 and c ≠ 0.   Write  

y  as a function of  x  alone and show that the parametric graph  (x, y)  is a straight line.  What is the slope 

of the resulting line? 
 

24. The parametric equations given in  (a) – (e)  all satisfy  x2 + y2 = 1, and, for  0 ≤ t ≤ 2π, the path of each 

object is a circle with radius 1  and center at the origin.  Explain how the motions of the objects differ. 

 (a) x(t) = cos(t), y(t) = sin(t), (b) x(t) = cos(–t), y(t) = sin(–t), (c) x(t) = cos(2t), y(t) = sin(2t), 

 (d) x(t) = sin(t), y(t) = cos(t), and  (e) x(t) = cos(t + π/2), y(t) = sin(t + π/2) 
 

25. From a tall building you observe a person is walking along a straight path while twirling a light (parallel 

to the ground) at the end of a string.  (a)  If the person is walking slowly, sketch the path of the light.  (b)  

How would the graph change if the person was running?  (c)  Sketch the path for a person walking 

(running) along a parabolic path. 
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26. William Tell and the Falling Apple:  William Tell is 

aiming directly at an apple, and releases the arrow at 

exactly the same instant that the apple stem breaks.  In a 

world without gravity (or air resistance), the apple remains 

in place after the stem breaks, and the arrow flies in a 

straight line to hit the apple  (Fig. 27).  Sketch the path of 

the apple and the arrow in a world with gravity (but still no 

air).  Does the arrow still hit the apple?  Why or why not? 
 

27. Find the radius  R  of a circle which generates a cycloid starting at the point  (0,0)  and   

 (a)  passing through the point  (10π, 0) on its first complete revolution  (0 ≤ t ≤ 2π).. 

 (b)  passing through the point  (5, 2) on its first complete revolution.  (A calculator is helpful here.) 

 (c)  passing through the point  (2, 3) on its first complete revolution.  (A calculator is helpful here.) 

 (d)  passing through the point  (4π, 8) on its first complete revolution. 
 

The Ferris Wheel and the Apple  (problems  28 – 30). 
 

28. Your friends are on the Ferris wheel illustrated in Fig. 28, and at 

time  t  seconds, their location is given parametrically as   

  ( –20 sin( 
2π
15  t ) , 30 – 20 cos( 

2π
15  t ) ).   

(a)  Is the Ferris wheel turning clockwise of counterclockwise? 

(b)  How many seconds does it take the Ferris wheel to make a 

revolution? 
 

29. You are  50  feet to the left of the Ferris wheel in problem 28, and you toss an apple from a height of 6 

feet above the ground at an angle of  45°.  Write parametric equations for the location of the apple 

(relative to the origin in Fig. 29) at time  t  if 

 (a) its initial velocity is  30 feet per second, and (b)   its initial velocity is  V  feet per second. 
 

30. Help –– the Ferris wheel won't stop!  To keep your friends on the Ferris wheel in problem 28 from 

getting too hungry, you toss an apple to them (at time  t = 0).  Write an equation for the distance between 

the apple and your friends at time  t.  Somehow, find a value for the initial velocity  V  of the apple so 

that it comes close enough for your friend to catch it, within 2 feet.  (Note:  A calculator or computer is 

probably required for this problem.) 
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Section 9.3 PRACTICE  Answers 
 

Practice 1: A possible path for the car is shown  

  in Fig. 29. 

Practice 2: If the  (rabbit, fox) parametric graph touches 

the horizontal axis, then there are 0 foxes: the foxes are 

extinct. 
Practice 3: x = 3 – t  and  y = t2 + 1. 

 Then  t = 3 – x  and  y = (3 – x)2 + 1 = x2 – 6x + 10.   

 The graph in Fig. 30 is parabola, opening upward, with 

vertex at  (3,1). 
 

Practice 4: The parametric graph of x(t) = sin(t)  and  y(t) = 5 cos(t)   

  is shown in Fig. 31.  For all  t, 
 

 
x2

1    +  
y2

25   =  
sin2(t)

1    +  
25 cos2(t)

25    =  sin2(t) + cos2(t) = 1. 
 
Practice 5: A: Starts at (1,0), travels counterclockwise, and  

    takes  2π/2 = π  seconds to make one revolution. 

  B: Starts at (–1,0), travels clockwise, and  

    takes  2π/3  seconds to make one revolution. 

  C: Starts at (0,–1), travels counterclockwise, and  

    takes  2π/4 = π/2  seconds to make one revolution. 
   

Practice 6: (a) x(t) = 40.cos( 45o ).t ,  y(t) = 40.sin( 45o ).t – 16t2 . 

  (b) Let  A = 40.sin( 45o ) = 40.cos( 45o ) ≈ 28.284. 

   Then the ball is at  x(t) = At  and  y(t) = At – 16t2. 

Along the ground line,  y = – 
1
2  x  so the ball intersects the ground when  y(t) = – 

1
2  x(t): At – 16t2  = – 

1
2  At. 

When  t ≠ 0, we can solve  At – 16t2  = – 
1
2  At   for  t = 

3
32  A.   

Putting  t = 
3
32  A  into the equations for the location of the ball, we have 

 x( 
3
32  A ) = A.( 3

32  A ) = 
3
32  A2   and  y( 

3
32  A ) = A.( 3

32  A ) – 16( 
3
32  A )2 = – 

3
64   A2  . 

The ball hits the ground after  t =  
3
32  A =  

3
32  .40.sin( 45o ) ≈ 2.652  seconds. 

The ball hits the ground at the location  x =  
3
32  A2  = 75 feet  and  y = – 

3
64   A2  = – 37.5 feet. 

 
Practice 7: Axle: xa = R.t  and  ya = R.  Light relative to the axle:  xl = – r.sin(t)  and  yl = – r.cos(t). 

  Then  x(t) = xa + xl =  R.t – r.sin(t)  and  y(t) = ya + yl = R – r.cos(t). 


