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5.1 VOLUMES  OF  SOLIDS 
 

The last chapter emphasized a geometric interpretation of definite integrals as "areas" in two dimensions.  

This section emphasizes another geometrical use of integration, calculating volumes of solid three–

dimensional objects such as those shown in Fig. 1.  Our 

basic approach is to cut the whole solid into thin 

"slices" whose volumes can be approximated, add the 

volumes of these "slices" together (a Riemann sum), 

and finally obtain an exact answer by taking a limit of 

the sums to get a definite integral. 

 
The Building Blocks: Right Solids 
 

A right solid is a three–dimensional 

shape swept out by moving a planar 

region  A  some distance  h  along a line 

perpendicular to the plane of  A  (Fig. 2).  The region  A  is 

called a  face of the solid, and the word "right" is used to 

indicate that the movement is along a line perpendicular, at 

a right angle, to the plane of A.  Two parallel cuts produce one slice with two faces  (Fig. 3): a slice has 

volume, and a face has area. 
 

Example 1: Suppose there is a fine, 

uniform mist in the air, and every cubic 

foot of mist contains 0.02 ounces of water 

droplets.  If you run 50 feet in a straight 

line through this mist, how wet do you 

get?  Assume that the front (or a cross 

section) of your body has an area of 8 

square feet. 
 
Solution: As you run, the front of your 

body sweeps out a "tunnel" through the 

mist  (Fig. 4).  The volume of the tunnel is  

 the area of the front of your body multiplied by the length of the tunnel:  volume = (8 ft2 )(50 ft) = 400 ft3 .  

Since each cubic foot of mist held  0.02 ounces of water which is now on you, you swept out a total of   

 (400 ft3 ).(0.02 oz/ft3 ) = 8 ounces of water.  If the water was truly suspended and not falling, would it 

matter how fast you ran? 
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If A is a rectangle (Fig. 5), then the "right solid" formed by moving  A  along 

the line is a 3–dimensional solid box B. The volume of B is   

 (area of A).(distance along the line) = (base).(height).(width). 

 

If A is a circle with radius  r  meters (Fig. 6), then the "right 

solid" formed by moving A  along the line  h  meters is a 

right circular cylinder with volume equal to   
 

 {area of A}.{distance along the line} 
 = { π (r ft)2 }.{h  ft} = { π.r2 ft2 }.{ h ft } = π r2h  ft3 . 

 
 

If we cut a right solid perpendicular to its axis (like cutting a loaf of bread), then each face (cross section) has 

the same two–dimensional shape and area.  In general, if a 3–dimensional right solid  B  is formed by moving 

a 2–dimensional shape A  along a line perpendicular to A, then the volume of B is defined  to be 
 

volume of B = (area of A).(distance moved along the line perpendicular to A). 
 
The volume of each right solid in Fig. 7 is (area of the base).(height). 
 
Example 2: Calculate the volumes of the right solids in Fig. 7. 
 

Solution: (a)  This cylinder is formed by moving the circular base  

  (area = πr2 = 9π in2 ) along a line perpendicular to the base for 4 inches, 

so the volume is  ( 9π in2 ).( 4 in ) = 36π in3 . 

 (b) volume = (base area).(distance along the line) = (8 m2 ).(3 m) = 24 m3. 

 (c) This shape is composed to two easy right solids with volumes   
  V1 = (π32).(2) = 18π cm3  and  V2 = (6)(1).(2) = 12 cm3 , so the  

  total volume is  (18π + 12) cm3  or approximately 68.5 cm3 .  
 
Practice 1: Calculate the volumes of the right solids in Fig. 8. 
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Volumes of General Solids 
 
A general solid can be cut into slices which are almost right solids.  An individual slice may not be exactly a  

right solid since its cross sections may have different areas.  However, if the cuts are close together, then the 

cross sectional areas will not change much within a single slice.  Each slice will be almost a right solid, and 

its volume will be almost the volume of a right solid. 
 

Suppose an x–axis is positioned below the solid shape (Fig. 9), and let  

A(x)  be the area of the face formed when the solid is cut at  x  
perpendicular to the x–axis.  If  P = { x0=a, x1, x2, . . . , xn = b}  is a 

partition of [a,b], and the solid is cut at each  xi , then each slice of the 

solid is almost a right solid, and the volume of each slice is 

approximately   
 
 ( area of a face of the slice).(thickness of the slice) ≈ A(xi) ∆xi  . 

 

The total volume  V  of the solid is approximately the sum of the volumes of the slices: 
 

 V =  ∑ {volume of each slice}   ≈  ∑ A(xi)∆xi     which is a Riemann sum. 
 

The limit, as the mesh of the partition approaches 0 (taking thinner and thinner slices), of the Riemann sum 

is the definite integral of  A(x): 

    V ≈  ∑ A(xi)∆xi    →   ⌡⌠

a

b
 A(x) dx   . 

 
  
 Volume By Slices Formula 
 
 If S  is a solid and  A(x) is the area of the face formed by a cut  

  at  x  and perpendicular to the x–axis ,  
 

 then the volume  V  of  the part of  S  above the interval  [a,b]  is  V  =  ⌡⌠

a

b
 A(x) dx  . 

    
If  S  is a solid  (Fig. 10), and A(y) is the area of a face formed by a cut at   
y  perpendicular to the y–axis, then the volume of a slice with thickness ∆yi  is  

approximately  A(yi).∆yi  .  The volume of the part of  S  between cuts at  c  and  d   

on the y–axis is 

  V = ⌡⌠

c

d
 A(y)  dy . 

     
 
Example 3: For the solid in Fig. 11, the face formed by a cut at  x  is a rectangle 
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with a base of 2  inches  
 and a height of  cos(x)  inches.  (a)  Write a formula for the approximate volume of the slice between  xi–1  

and  xi  . (b)  Write and evaluate an integral for the volume of the solid for  x  

between  0  and  π/2. 
 
Solution:  

(a) The volume of the slice ≈ (area of the face).(thickness)  

  = (base).(height).(thickness)  
  = (2 in).(cos(xi) in).( ∆xi in)  

  = 2cos(xi) ∆xi  in
3 . 

 

 (b) Volume =  ⌡⌠

a

b
 A(x) dx  =  ⌡⌠

0

π/2
 2 cos(x) dx   = 2 sin(x) |

π/2

0
   

  = 2 sin(π/2) – 2 sin(0) = 2 in3 . 

 

Practice 2: For the solid in Fig. 12, the face formed by a cut at  x  is a 

triangle with a base of 4  inches and a height of  x2  inches.   
 (a)  Write a formula for the approximate volume of the slice between  xi–1   and  xi . (b)  Write and 

evaluate an integral for the volume of the solid  for  x  between  1  and  2. 
 
Example 4: For the solid in Fig. 13, each face formed by a cut at  x  is a circle with diameter  x   .   

 (a) Write a formula for the approximate volume of the slice  
  between  xi–1  and  xi . 

 (b) Write and evaluate an integral for the volume of the solid  for   

  x  between  1  and  4. 
 
Solution:  (a) Each face is a circle with diameter  xi   , and the area of the circle 
is  
 A(xi) = π.(radius)2 = π(1/2 diameter)2 = π( 1/2 xi  )

2 = πxi/4 .  

 The volume of the slice ≈ (area of the face).(thickness) = (πxi/4).(∆xi)  

(b) Volume = ⌡⌠

a

b
A(x) dx  =  ⌡⌠

1

4

 
πx
4  dx   = 

π
4  . 

x2
2   |

4

1
  =  

π
4 

16
2    – 

π
4 

1
2   =  

15π
8   ≈ 

5.89 in3. 

Practice 3: For the solid in Fig. 14, each face formed by a cut at  x  is a  

  square with height  x   .   
(a) Write a formula for the approximate volume of the slice between  xi–1  and  

xi . 

(b) Write and evaluate an integral for the volume of the solid  for  x  between  1  and  4. 
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Example 5: Find the volume of the square–based pyramid in Fig. 15. 
 

Solution:  Each cut perpendicular to the y–axis yields a square face, but  

in order to find the area of each square we need a formula for the length of  

one side  s  of the square as a function of  y, the location of the cut.   

Using similar triangles (Fig. 16), we know that 
 

 
s

10–y  = 
6
10   so  s = 

6
10 (10 – y) .    

 
The rest of the solution is straightforward. 
 

A(y) = (side)2  = {  
3
5 (10 – y)  }2 = 

9
25 (100 – 20 y + y2 )   and 

V = ⌡⌠

0

10
 A(y) dy   =  ⌡⌠

0

10

 
9

25 (100 – 20y + y2 ) dy   = 
9
25 (100y – 10y2 + 

y3
3   )  |

10

0
    

   =  
9
25 (1000 – 1000 + 

1000
3  )  – (0)  = 

9
25 

1000
3   = 120 ft3 . 

 

 

 

 

Example 6: A solid is built between the graphs of  f(x) = x+1  and   

 g(x) = x2  by building squares with heights (sides) equal to the vertical  

 distance between the graphs of f  and  g  (Fig. 17).  Find the volume of  

 this solid for   0 ≤ x ≤ 2 . 
 

Solution: The area of a square face is A(x) = (side)2 ,  and the length of a  

 side is either  f(x)–g(x)  or  g(x)–f(x), depending on which function is  

 higher at  x.  Fortunately, the side is squared in the area formula so it  

 does not matter which is taller, and  A(x) = { f(x) – g(x) }2 .  Then 
 

 V = ⌡⌠

a

b
  A(x) dx  = ⌡⌠

0

2
   { f(x) – g(x) }2 dx = ⌡⌠

0

2
   { (x+1) – x2 }2 dx  =  ⌡⌠

0

2
   { (x+1) – x2 }2 dx  

 

  =  ⌡⌠

0

2
  (1 + 2x – x2 – 2x3 + x4 )  dx   = x  + x2 – 

x3
3    – 

x4
2    + 

x5
5    |

2

0
  =   

26
15   =  1  

11
15   . 
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We saw earlier that areas can have nongeometric interpretations such as distance and total accumulation.  

Similarly, volumes can have  nongeometric interpretations.  If  x  represents an age in years, and  f(x)  is the 

number of females in a population with age exactly equal to x, then the "area,"  ⌡⌠

a

b
  f(x) dx , is the total 

number of females with ages between  a  and  b  (Fig. 18).  If the birth rate for females of age  x  is  r(x) ,  

with units "births per female per year,"  (Fig. 19)  then the "volume" of the solid in Fig. 20  is    

C = ⌡⌠

a

b
   r(x).f(x) dx . C  is the number of births during a year to females between the ages  a  and  b , and 

the units of  C  will be "births." 
 
 

 

 

 

 

 

 

 

 

 

 

Volumes of Revolved Regions 
 

When a region is revolved around a line  (Fig. 21)  a right 

solid is formed.  The face of each slice of the revolved region is a circle so the formula for the area of the face 

is easy: A(x) = area of a circle = π(radius)2  where the radius is often a function of the location x.  Finding a 

formula for the changing radius requires care. 
 

Example 7: For  0 ≤ x ≤ 2, the area between the graph of  f(x) = x2  and 

the horizontal line  y = 1  is revolved about the horizontal 

line y=1  to form a solid  (Fig. 22).  Calculate the volume of 

the solid. 
 

Solution:  The radius function is shown in 

the figure for several values of  x.  If  0≤ x 

≤1, then   r(x) = 1–x2 , and if 1≤x≤2 then  r(x) = x2 –1.  Fortunately, 

however,  A(x) = π {r(x)}2    always uses the square of  r(x)   and the 

squares of  1–x2   and  x2 –1  are equal.   
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 A(x) = π { r(x) }2 = π { x2  – 1 }2  = π { x4 – 2x 2 + 1 } ,  and 

 V = ⌡⌠

0

2
  π{ x4 – 2x 2  + 1 } dx  = π( 

x5
5    – 

2
3  x3 + x ) |

2

0
    =  

46
15  π ≈ 9.63 . 

 

Practice 4: A solid of revolution is formed when  the region between   

 f(x) = 3 – x   and the horizontal line  y = 2  is revolved about the  

 line  y=2  for  0≤x≤3  (Fig. 23).  Find the volume of the solid. 

 
  
 Volumes of Revolved Regions  ("Disks") 
  

 If  the region formed between f, the horizontal line  y = L, and the interval  [a, b]   

  is revolved about the horizontal line  y = L,  (Fig. 24) 
 

 then the volume is  V = ⌡⌠

a

b
  A(x) dx  =  ⌡⌠

a

b
  π.(radius)2 dx  = ⌡⌠

a

b
  π{ f(x) – L }2 dx  . 

   
 

This is called the "disk" method because the shape of each thin  

slice is a circular disk.  If the region between  f  and the  x–axis   

(L=0) is revolved about the x–axis, then the previous formula reduces to   

 

 V = ⌡⌠

a

b
  π { f(x) }2 dx . 

 

 

Example 8: Find the volume generated when the region between one arch of the sine curve  (0 ≤ x ≤ π)  

and the x–axis is revolved about  (a) the x–axis and (b) the line y=1/2. 
 

Solution: (a) V  = ⌡⌠

a

b
  π.(radius)2 dx  = ⌡⌠

0

π
  π{ sin(x) }2 dx  =  π ⌡⌠

0

π
  sin2(x)  dx  = 

π
2 ⌡⌠

0

π
  1 – cos(2x)  dx   

  = 
π
2  { x – 

sin(2x)
2   } |

π

0
   = 

π
2  { π  – 0 } =  

π2
2    ≈  4.93 . 

 

 (b) V = ⌡⌠

a

b
  π.(radius)2 dx  = ⌡⌠

0

π
  π{ sin(x) – 

1
2  }2 dx  =  π⌡⌠

0

π
   {sin2(x) – sin(x) + 

1
4  } dx   

  = π { 
π
2  – 2 + 

π
4  }  ≈  1.12 . 

 
Practice 5: Find the volumes swept out when  
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 (a) the region between  f(x) =  x2 and the x–axis, for 0 ≤ x ≤ 2 , is revolved about the x–axis, and 

 (b) the region between  f(x) =  x2 and the line y=2 , for 0 ≤ x ≤ 2 , is revolved about the line y=2. 
 

Example 9: Given that  ⌡⌠

1

5
  f(x) dx = 4  and   ⌡⌠

1

5
  { f(x) }2 dx = 7 .  Represent the volumes of the solids  

(a), (b) and (c)  in Fig. 25  as definite integrals and evaluate the integrals. 

Solution: (a) V =  ⌡⌠

1

5
 π.( radius ) 2 dx  = ⌡⌠

1

5
  π. { f(x) }2 dx =  π ⌡⌠

1

5
  f2(x) dx = 7π . 

  (b) V =  ⌡⌠

1

5
 π.( radius ) 2 dx  = ⌡⌠

1

5
  π.{ f(x) – (–1) }2 dx = π ⌡⌠

1

5
  { f2(x) + 2f(x) + 1 } dx  

 

   = π { ⌡⌠

1

5
  f2(x) dx + 2 ⌡⌠

1

5
  f(x) dx + ⌡⌠

1

5
  1 dx } = π { 7 + 2.4 + 4 } = 19π . 

  (c) V =  ⌡⌠

1

5
 π.( radius ) 2 dx  = ⌡⌠

1

5
  π.{ f(x) / 2 }2 dx  =  

π
4   ⌡⌠

1

5
  f2(x) dx  =  

7π
4    . 

 

 

Practice 6: Set up and evaluate the integral for the volume of  (d)  in Fig. 25. 

 

 

 
 
Solids With Holes 
 

The previous ideas and techniques can also be used to find the volumes of solids with holes in them.  If  A(x)  

is the area of the face formed by a cut at x, then it is still true that the volume is  V = ⌡⌠

a

b
  A(x) dx  .  However, if 

the solid has holes, then some of the faces will also have holes and a formula for  A(x)  may be more 

complicated. 
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Sometimes it is easier to work with two integrals and then subtract:  (i)  calculate the volume S  of the solid 

without the hole,  (ii)  calculate the volume H  of the hole, and  (iii)  subtract  H  from S. 

 
Example 10: Calculate the volume of the solid in Fig. 26. 
 
Solution:   The face for a slice at  x  , has area   

 A(x) = {area of large circle} – {area of small circle}  

  = π{large radius}2 – π{small radius}2   

  = π{ x + 1 }2 – π{1/x }2  =  π(x2 + 2x + 1 – 1/x2 ).    Then 
 

 Volume = ⌡⌠

a

b
  A(x) dx  =   ⌡⌠

1

2
  π(x2 + 2x + 1 – 1/x2 ) dx   

  = π{ 
1
3  x3 + x2 + x  + 1/x }|

2  

1  ≈ 18.33 . 

 Alternately, the volume of the solid with the large circular faces is ⌡⌠

1

2
  π(x2 + 2x + 1) dx = 

19π
3   ≈ 19.90 ,  

 and the volume of the hole is  ⌡⌠

1

2
  π( 1/x2 ) dx  = 

π
2  ≈ 1.57  so the  

 volume we want is 19.90 – 1.57 = 18.33 . 

 

Practice 7: Calculate the volume of the solid in Fig. 27 . 
 
 
 
 
 
WRAP UP 
 

At first, all of these volumes may seem overwhelming –– there are  

so many possible solids and formulas and different cases.  If you 

concentrate on the differences, it is very complicated.  Instead, focus 

on the pattern of cutting, finding areas of faces, volumes of slices, 

and adding.  With that pattern firmly in mind, you can reason your 

way to the definite integral.  Try to make cuts so the resulting faces have regular shapes (rectangles, 

triangles, circles) whose areas you can calculate.  Try not to let the complexity of the whole solid confuse 

you.  Sketch the shape of one face and label its dimensions.  If you can find the area of one face in the 

middle of the solid, you can usually find the pattern for all of the faces and then you can easily set up the 

integral. 
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PROBLEMS 
 
In problems 1 – 6, use the values given in the tables to calculate the volumes of the solids.  (Fig. 28 – 33) 
 
Table 1: box base height thickness Table 2: box base height thickness  
(Fig. 28) 1 5 6 1 (Fig. 29) 1 5 6 2 
 2 4 4 2 2 5 4 1 
 3 3 3 1 3 3 3 1 
     4 2 2 1 
 
 
Table 3: disk radius thickness Table 4: disk height thickness 
(Fig. 30) 1 4 0.5 (Fig. 31) 1 8 0.5 
 2 3 1 2 6 1 
 3 1 2 3 2 2 
 
Table 5: slice face area thickness Table 6: slice rock area min. area thickness 
(Fig. 32) 1 9 0.2 (Fig. 33) 1 4 1 0.6 
 2 6 0.2 2 12 1 0.6 
 3 2 0.2 3 20 4 0.6 
     4 10 3 0.6 
      5 8 2 0.6 

 

 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

  
3

Fig. 28
1

2  



5.1 Volumes Contemporary  Calculus  

 

11 

 

In problems 7 – 12, represent each volume as an integral and evaluate the integral. 
 

7.   Fig. 34.  For  0 ≤ x ≤ 3, each face is a rectangle with  

       base 2 inches and height  5–x  inches. 

 
 
8.   Fig. 35.  For  0 ≤ x ≤ 3, each face is a rectangle  
       with base x inches and height  x2  inches. 
 
 
 
 

 
 

9.    Fig. 36.  For  1 ≤ x ≤ 4, each face is a triangle with  
       base  x + 1  meters and height  x   meters. 
 
10.   Fig. 37.  For 0 ≤ x ≤ 3, each face is a circle with  

        height (diameter)  4 – x  meters. 
 
11.    Fig. 38.  For 2 ≤ x ≤ 4, each face is a circle with  

         height (diameter)  4 – x  meters. 

 
 
12. Fig. 39.  For  0 ≤ x ≤ 2  , each face is a  

 square with a side extending from  y = 1   

 to  y = x + 2. 
 
 
 
 
 
 
 
 
 
 

 
 
13.     Suppose  A  and  B  are solids (Fig. 40)  so  

          that every horizontal cut produces faces of   A  and  B  that have equal  

         areas.  What can we conclude about the volumes of  A  and  B?  Justify  

         your answer. 
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In problems 14 – 22, represent each volume as an integral and evaluate the integral.   
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23.  Calculate the volume of a sphere of radius 2.  (A sphere is formed when the region bounded by the  

 x–axis and the top half of the circle  x2 + y2 = 22   is revolved about the x–axis.) 
 

24. Determine the volume of a sphere of radius r.  (A sphere is swept out when the region bounded by the 

x–axis and the top half of the circle  x2 + y2 = r2   is revolved about the x–axis.) 
 

25. Calculate the volume swept out when the top half of the  

 elliptical region bounded by    
x2

52   +  
y2

32   = 1  is revolved  

 around the x–axis  (Fig. 41).  (y = +3 1 – (x2/25)    ) 
 
 
 
 

 
 

26. Calculate the volume swept out when the top half of the elliptical region bounded by    

 
x2

a2   +  
y2

b2   = 1  is revolved around the x–axis.  ( y = +b 1 – (x2/a2)    ) 

 

27. Determine the volume of the "doughnut" in Fig. 42.  (The top half of the circle is  

 given by  f(x) = R + r2 – x2   and the bottom half is given by   

 g(x) = R – r2 – x2    .  (It is easier to use a single integral for this problem.) 
 

 

 

28. (a)  Find the area between  f(x) = 1/x  and the x–axis for  1≤ x ≤10, 1≤ x ≤100, and  

  1≤ x ≤A.  What is the limit of the area for  1≤ x ≤A  as  A →∞ ? 

 (b)  Find the volume swept out when the region in part (a) is revolved about the  

  x–axis for 1≤ x ≤10, 1≤ x ≤100, and 1≤ x ≤A.  What is the limit of the volumes for  1≤ x ≤A   

  as  A →∞ ? 
 

 

29. Personal Calculus:"  Describe a practical way to determine the volume of your hand and arm up to the 

elbow. 
 

30. Personal Calculus:"  Most people have a body density between .95 and 1.05 times the density of water 

which is  62.5 pounds per cubic foot.  Use your weight to estimate the volume of your body.  (If you 

float in fresh water, your body density is less than 1.) 
 



5.1 Volumes Contemporary  Calculus  

 

14 

 

Volumes of "right cones"  
 

31. Calculate (a) the volume of the right solid in Fig. 43a,  (b) the volume of the "right cone" in Fig. 43b, 

and (c) the ratio of the "right cone" volume to the right solid volume.  (square cross sections) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

32. Calculate (a) the volume of the right solid in Fig. 44a,  (b) the volume of the "right cone" in Fig. 44b, 

and (c) the ratio of the "right cone" volume to the right solid volume.  (circular cross sections) 

 

33. The "blob" in Fig. 45  has area B.  

 (a) Calculate the volume of the right solid in Fig. 45a.  

(b) If a "right cone" is formed (Fig. 45b), then the cross  

 section area at  x  is  A(x) = (B/L2)x2 .  

 Find the volume of the "right cone".   

(c) Find the ratio of the "right cone" volume to the right solid  

 volume. 
 
 
 
 
 
 
Section 5.1 PRACTICE  Answers 
 
 

Practice 1: (a) Triangular base:  v = (base area).(height) = ( 
1
2  .3.4 ).(6) = 36. 

  (b) Semicircular base:  v = (base area).(height) = 
1
2  .( π .32).(7) ≈ 98.96 . 

  (c) Strangely shaped base:  v = (base area).(height) = (8 in2).(5 in) = 40 in3 . 
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Practice 2: (a) vi ≈ (area of face)(thickness) ≈ ( 
1
2  .4 .xi

2 ).( ∆xi ) =  2xi
2 ∆xi . 

   (b) v =  ⌡⌠

1

2
  2x2 dx  =  

2
3  x3 |2

1
   = 

16
3    – 

2
3   =  

14
3    cubic inches. 

Practice 3: (a) vi ≈ (area of face)(thickness) ≈  ( xi    )
2( ∆xi ) =  xi ∆xi . 

  (b) v =  ⌡⌠

1

4
  x dx  =   

1
2  x2 |4

1
   = 8 – 

1
2   = 7.5 . 

Practice 4: vi ≈ (area of face)(thickness)  ≈ ( π.r2)( thickness )  

  = ( π.( (3–xi) – 2)2( ∆xi ) = π(1 – 2xi + xi
2) ∆xi . 

  Then  volume =    ⌡⌠

0

3
  π(1 – 2x + x2) dx  =  π(x – x2 + 

1
3  x3 ) |3

0
   =  3π  ≈  9.42 . 

Practice 5: (a) v =    ⌡⌠

a

b
  π( radius )2 dx  =    ⌡⌠

0

2
  π( x2 )2 dx  =  

π
5  x5 |2

0
   =  

32π
5    =  20.1  . 

  (b) v =    ⌡⌠

a

b
  π( radius )2 dx  =    ⌡⌠

0

2
  π( 2 – x2 )2 dx  =    ⌡⌠

0

2
  π( 4 – 4x2 + x4 ) dx   

  =  π ( 4x – 
4
3  x3 + 

1
5  x5 ) |2

0
  =  

56π
15     ≈  11.73 . 

Practice 6: (d)   v = ⌡⌠

a

b
  π( radius )2 dx  = ⌡⌠

1

5
  π( 3 – f(x) )2 dx  = π  ⌡⌠

1

5
   9 – 6f(x) + f2(x)  dx   

             = π  ⌡⌠

1

5
  ( 9 – 6f(x) + f2(x)  )  dx = π⌡⌠

1

5
  9 dx – 6π⌡⌠

1

5
  f(x) dx + π⌡⌠

1

5
  f2(x) dx  

  = π(36) – 6π(4) + π(7) = 19π ≈  59.69 . 

   (The values  "7" and  "4"  are given in Example 9)  .  
 

Practice 7: The volume we want can be obtained by subtracting the volume of the "box" from the 

volume of the truncated cone generated by the rotated line segment. 

 volume of truncated cone  = ⌡⌠

a

b
  π( radius )2 dx  = ⌡⌠

0

2
  π( x + 2 )2 dx   

   = π ⌡⌠

0

2
  x2 + 4x + 4  dx  =  π { 

1
3  x3 + 2x2 + 4x }|2

0
  = 

56
3   π  ≈ 58.64 . 

 

 volume of "box"  =  (length)(width)(height) =  2 ( 2  )( 2  )  =  4. 

 

 The volume we want is  
56
3   π – 4  ≈  54.64 . 

 


