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6.2 SEPARABLE DIFFERENTIAL EQUATIONS 
 

In the previous section,   y'  was a function of  x  alone and the slopes of the line 

segments of the direction field did not depend on the y–coordinate of the location of the 

line segment.  In many situations, however,  y'  depends on both  x  and  y, for example,  

y' = xy  (Fig. 1) or  y' = x + y  (Fig. 2).  This section emphasizes how to solve differential 

equations in which the variables can be "separated,"  and the next section examines 

several applications of these "separable" differential equations. 
 
 

Definition: A differential equation is called separable if the variables can be  

 separated algebraically so that the equation has the form   

 {function of  y  alone}.y' = {function of  x  alone}:  g( y ).y' = f( x ). 

 

Example 1: "Separate the variables" by writing each differential equation in the  

 form  g(y).y' = f(x)   (x, y > 0).    
 

 (a)  y' = xy (b)  x y' =  
y+1

x        (c)  y' =  
1 + sin(x)

y2 + y
  (d)  y' = y 

 

Solution:  (a)  Dividing each side of  y' = xy  by  y, we have  
1
y   .y' = x  so  g(y) =  

1
y   and  f(x) = x . 

 

 (b)  Dividing each side by  x(y+1), we have  
1

y+1   .y' =  
1
x2    so  g(y) =  

1
y+1   and  f(x) =  

1
x2   . 

 

 (c)  Multiplying each side by  y2 + y,  (y2 + y) .y' = 1 + sin(x)  so  g(y) = y2 + y  and  f(x) = 1+sin(x) . 

 

 (d)  Dividing each side by y,  
1
y   .y' = 1  so  g(y) =  

1
y   and  f(x) = 1. 

 The differential equations (a) – (d)  are separable. 

 

Practice 1: Show these differential equations are separable by rewriting them in the form g(y).y' = f(x). 
 

 (a)  y' = x3 (y – 5)    (y > 5) (b)  y' =  
3

2x + x.sin(y+2)
      (x > 0)  

 

Many differential equations can not be written in the form  g(y) .y' = f(x);  they are not separable.  For 

example,  y' = x + y  and  y' = sin(xy) + x  are not separable.  Techniques for solving some of these 

nonseparable equations are discussed in Chapter 17.  
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Solving Separable Differential Equations 
 

The steps to solve a separable differential equation are straightforward:   

• use algebra to separate the variables, 

• put the equation into an equivalent form with differentials, and  

• integrate each side of the equation. 

 

Example 2: Find the general solution of   
1
x  y' = 

x
2y    (x, y > 0) . 

 
Solution: By multiplying each side by  2xy, this differential equation can be written as  2y y' = x2 , so  

 it is separable and can be put into differential form:   
 

  2y y' = x2   so  2y 
dy
dx  = x2  and  2y dy = x2 dx. 

 

 Integrating each side,  ∫ 2y dy = ∫ x2 dx , so   y2 = 
1
3  x3 + C , an implicit form of the general solution. 

 

 (Each antiderivative has an integration constant,  y2 + C1 = 
1
3  x3 + C2  , but  C1  can be moved to the 

right side of the equation, combined with C2 , and the final result expressed using only a single 

constant,  C = C2 – C1.  Then  y2 =  x3/3 + C . )  
 

   Finally, solving  for  y,  we have  y =  ± 
1
3 x3 + C     , the explicit form of the general solution. 

 
  

    Steps for solving a separable equation  g(y).y' = f(x): 
 

 (a) Rewrite in differential form: g(y) dy = f(x) dx 
 

 (b) Integrate each side: ∫ g(y) dy = ∫ f(x) dx 
 

 (c) Find antiderivatives of g  and f: G(y) = F(x) + C       ( G ' = g  and  F ' = f ) 
 
 (d) If  an initial value  (x 0,y0)  is given, put the values for  x0  and y0  into  F  and G    

  and solve for C.  
 

 (e) If possible,  explicitly solve for y . 
    

 

Example 3: Find the solution of  y' =  
6x + 1

2y    (y > 0)   which satisfies  y(2) = 3. 
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Solution: This differential equation can be written as  2y y' = 6x + 1  so it is separable and can be  

 written using differentials: 
 

  2y y' = 6x + 1   so   2y 
dy
dx  = 6x + 1   and   2y dy = ( 6x + 1 )  dx 

 
 Integrating each side,  ∫ 2y dy = ∫ 6x + 1  dx   so  y2 = 3x2 + x + C. 
 

 In an initial value problem, it is usually safest to solve for  C  immediately after finding the 

antiderivatives.  Putting x = 2 and y = 3 into the general solution  y2 = 3x2 + x + C, 
 
   (3)2 = 3(2)2 + (2) + C  so  9 = 12 + 2 + C  and  C = –5. 
 

 Then  y2 = 3x2 + x – 5  or   y = ± 3x2 + x – 5   .  Since the point  (2, 3) is on the top half of  

 the circle, we use only the + value of the square root for y:  y = + 3x2 + x – 5   . 
 

 The general solution of  y' =  
6x + 1

2y     is  y2 = 3x2 + x + C  or  y = 3x2 + x + C    . 

 The particular solution which satisfies the initial condition  y(2) = 3  is  y2 = 3x2 + x – 5  or   
 

 y = 3x2 + x – 5  . 

 

Practice 2: Find the general solution of  y' =   
1 – sin(x)

3y2     and the particular solution through  (0,2). 

 

Sometimes algebra is the hardest part of the problem, and logarithms are often involved. 
 

Example 4: Solve  x y' = y + 3   assuming  x ≠ 0  and  y ≠ –3. 
 

Solution: Putting the problem into the form g(y).  y' = f(x):    
1

y+3   y' = 
1
x   . 

 Rewriting this in differential form and  integrating, we have that 
 

  
1

y + 3   dy =  
1
x   dx   and   ∫  1

y + 3   dy =  ∫  1x   dx   so  ln| y + 3 | = ln| x | + C , 
 

 an implicit form of the general solution.  To explicitly solve for y,  recall that  eln( a )   = a.  Then 
 

  eln| y + 3 |  = eln| x | + C  =  eln| x | .eC     so   | y + 3 | = | x |.eC   and   y + 3 = ± x .eC   
 

 Replacing the complicated constant  ±eC  with  A  and subtracting 3 from each side, we have 
 
  y = Ax – 3 , an explicit form of the general solution. 
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Two Special Cases:  y' = ky  and  y' = k( y – a ) 
 

The separable differential equations  y' = ky  and y' = k(y – a)  are relatively simple, but they describe a wealth 

of important situations, including population growth, radioactive decay, drug testing, heating and cooling.  The 

two differential equations are solved here and some of their applications are explored in section 6.3. 

 
The Differential Equation  y' = ky:   
 

The differential equation  y' = ky  describes a function  y  whose rate of change is proportional to the value 

of  y.  Fig. 3  shows direction fields for  y' = 1y  (growth)  and  y' = – 2y  (decay).  The differential equation  

y' = ky   models the behavior of populations (the number of babies born is proportional to the number of 

people in the population) , radioactive decay (the number of atoms which decay is proportional to the 

number of atoms present), the absorption of some medicines by our bodies, and many other situations.  The 

solutions of  y' = ky  will help us determine how long it takes a population to double in size, how old some 

prehistoric artifacts are, and even how often some medicines should be taken in order to maintain a safe and 

effective concentration of medicine in our bodies. 

 

 

 

 

 

 

 

 

 

 

 
 

 If  y' = ky  (y > 0),  then  y = y(0).  ekx   . 
   
 

Proof: y' = ky  can be rewritten as   
1
y   y' = k  so it is a separable differential equation can be written    

using differentials as  
 

   
1
y   dy  =  k dx .  Then     ∫ 1y  dy = ∫ k dx   so   ln( y ) = kx + C.  

  

 When  x = 0, y = y(0)  so  ln( y(0) ) = k.0 + C  and  C = ln( y(0) ).  Then   
 

  ln( y ) = kx + ln( y(0) ),  so  eln( y )  = ekx + ln( y(0) )   =  ekx .eln( y(0) )  and  y = y(0).  ekx  . 
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Practice  3: The population of a town is  7,000 people and it is growing at a rate so   

 P ' = 0.08.P  people/year.  Write an equation for the population of the town  t  years  

 from now and use the equation to estimate the towns population in 10 years. 

 
The Differential Equation  y' = k( y – a ):   
 

The differential equation   y' = k(y – a)   describes a function  y  whose rate of change is proportional to the 

difference of  y  and the number  a.  Figure 4  shows the direction fields for   

y' = 1(y – a) = y – a  and  y' = –1(y – a) = a – y .  In the first case, the solution curves are "repelled" by the 

horizontal line  y = a, and in the second case they are "attracted" by the line.  The differential equation     

y' = k(y – a )  models the changing temperature of a cup of tea  (the rate of cooling is proportional to the 

difference in temperature of the tea  

and the surrounding air)  and the changing 

pressure within a balloon  (the rate of 

pressure change is proportional to the 

difference in pressure between the inside 

and outside of the balloon).  The  

solutions of the differential equation will 

help us determine how long it takes the hot 

tea to cool (or cold tea to warm up) to any 

given temperature and how long it takes a 

slowly leaking balloon (or tire) to lose half of its air. 

 
 

 If  y' = k(y – a ) ,  then  y – a = (y0 – a).  ekx  . 
    
 

Proof:  Since the differentiable equation  y' = k(y – a )  is separable, we can separate the variables, 

integrate, and solve for y.  The equation can be written as 

 

  
1

y – a   dy = k dx.  Then     ∫ 1
y – a   dy = ∫ k dx   so  ln(y – a) = k.x + C . 

 

 When  x = 0, y = y0   so  ln( y0 – a) = k.0 + C  and  C = ln( y0 – a) .  Then 
 

 ln(y – a) = k.x + ln( y0 – a)  so  eln(y – a) = ek.x + ln( y0 – a) =  ek.x  eln( y0 – a) = ( y0 – a).  ek.x   
 

 and   y – a =  ( y0 – a).  ekx  . 
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Practice 4: When a pan of  90oC  water  (To = 90)  is placed 

in a 70oC room (a = 70), the rate at which the water cools 

is  T' = –0.15(T – 70) degrees per minute  (Fig. 5).  Write 

a formula for the temperature  T  of the water  t  minutes 

after it is placed in the room and use the equation to 

estimate the temperature of the water after 5 minutes, 10 

minutes, and 15 minutes. 
 

The solutions of these two differential equations are used in applied problems in Section 6.3. 

 

 

PROBLEMS 

 

1. Fig. 6  shows the direction field of the separable differential equation   

 y' = 2xy .  Sketch the solutions of the differential equation which  

 satisfy the initial conditions  y(0) = 3, y(0) = 5, and  y(1) = 2. 
 
 
 
 

 
 
 
 

 

2. Fig. 7  shows the direction field of the separable differential equation   

 y' = x/y .  Sketch the solutions of the differential equation which  

 satisfy the initial conditions  y(0) = 3, y(0) = 5, and  y(1) = 2. 
 
 
 
 

 

In problems 3 – 10,  (a)  separate the variables and rewrite the differential equation in the form  

g(y).y' = f(x) , and  (b)  solve the resulting differential equation.  (Assume that  x  and  y  are restricted so 

that division by zero does not occur.) 
 

3. y' = 2xy  4. y' = x/y 5. (1 + x2).y' = 3 6. xy' = y + 3  
 

7. y' cos(x) = ey   8. y' = x2y + 3y 9. y' = 4y 10. y' = 5(2 – y) 
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In problems  11 – 18, solve the initial value separable differential equations. 
 
11. y' = 2xy  for y(0) = 3, y(0) = 5, and  y(1) = 2. 12. y' = x/y  for  y(0) = 3, y(0) = 5, and  y(1) = 2. 
 
13. y' = 3y  for  y(0) = 4, y(0) = 7,  and  y(1) = 3. 14. y' = –2y  for  y(0) = 4, y(0) = 7,  and  y(1) = 3. 
 
15. y' = 5(2 – y)  for  y(0) = 5  and  y(0) = -3. 16. y' = 7(1 – y)  for  y(0) = 4  and  y(0) = –2. 
 

17. (1 + x2).y' = 3  for   y(1) = 4  and y(0) = 2. 18. xy' = y + 3  for  y(1) = 20.  Can y(0) = 2? 

 

19. The rate of growth of a population  P(t)  which starts with 3,000 people and increases by 4% per year (Fig. 8) is 

P '(t) = 0.0392.P(t).  Solve the differential equation and use the solution to estimate the population in 20 years. 

 

20. The rate of growth of a population  P(t)  which starts with 5,000 people and 

increases by 3% per year is    P '(t) = 0.0296.P(t).  Solve the differential 

equation and use the solution to estimate the population in 20 years. 
 

21. The rate of decay of a piece of carbon–14 in a piece of material  

 containing  3 grams of carbon–14 is    C '(t) = (–0.00012).C(t)   

 where  C(t)  is the number of grams present after  t  years  (Fig. 9).   

 Solve the differential equation and use the solution to estimate the  

 amount of carbon–14 present after 10,000 years. 

 

22. The rate of decay of iodine–131 is  I '(t) = –0.086.I(t)  where  I(t)  is  

 the number of grams present after  t  days.  Solve the differential equation.   If 

we start with 5 grams of iodine–131,  how much will be  

 present after  2 hours and after 10 hours?  (First find a formula for  I(t). ) 
 

23. The rate of temperature change of a bowl of soup in a  25oC  room is   

 T ' = –0.12(T – 25)  where  T  is the temperature of the soup after  t  minutes.   

 If the soup originally is 80oC,  find a formula for  T  and use it to estimate 

the temperature of the soup after  5 minutes  (Fig. 10). 
 

24. When the switch is closed in an electrical circuit with a constant voltage 

source of 9 volts, a resistance of 2 ohms and an inductance of 3 henries, the 

rate of change of the current  i  (in amperes)  is described by the differential equation    

 3 
di
dt   +  2i  =  9  where  t  is the time in seconds.  Solve the separable differential equation for  i . 
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Section 6.2 PRACTICE  Answers 
 

Practice 1: (a) y ' = x3(y – 5)  so  
1

y–5  y ' = x3.  In the pattern, g(y) = 
1

y–5   and  f(x) = x3 . 

 (b) y ' =  
3

2x + x.sin(y+2)
     so  (2 + sin(y+2)).y ' = 

3
x  .  g(y) = 2 + sin(y+2)  and  f(x) = 

3
x  . 

 

Practice 2: y' =   
1 – sin(x)

3y2      so  3y2 .y ' = 1 – sin(x)  and  3y2 dy  = ( 1 – sin(x) ) dx.  Then 

 General solution:   ∫  3y2 dy  = ∫  ( 1 – sin(x) ) dx  so  y3 = x + cos(x) + C. 

 Particular solution  (0,2): (2)3 = 0 + cos(0) + C  so  8 = 1 + C  and  C = 7. 

  y3 = x + cos(x) + 7. 

 

Practice  3: (y' = ky  so  y = y(0).  ekx . )  P ' = 0.08.P  so  P(t) = P(0).e0.08t  with  P(0) = 7,000 . 

 P(t) = 7,000.e0.08t .  P(10) = 7,000.e0.08(10) =   7,000.e0.8 ≈  7,000(2.22554) = 15,579. 

 

Practice 4: (y' = k(y – a )  so  y – a = {y0 – a}.  ekx  ) 

  T ' = –0.15(T – 70) .  k = –0.15,  a = 70  and  T0 = 90.  Then 

  T – 70 = (T0 – 70)e–0.15t  = (90 – 70)e–0.15t = 20e–0.15t  and  T = 70 + 20e–0.15t  . 

 When  t = 5,  T = 70 + 20e–0.15t  = 70 + 20e–0.15(5)  = 70 + 20e–0.75  ≈ 70 + 20(0.472) ≈ 79.4° .  

 When  t = 10,  T = 70 + 20e–0.15t  = 70 + 20e–0.15(10)  = 70 + 20e–1.5  ≈ 70 + 20(0.223) ≈ 74.5° .  

 When  t = 15,  T = 70 + 20e–0.15t  = 70 + 20e–0.15(15)  = 70 + 20e–2.25  ≈ 70 + 20(0.105) = 72.1° .  

 After a "long" time, the temperature will be very close to (and slightly above)  70° . 

 


