Show Your Work!

Good Luck!

Nov. 6, 2018 Quiz #5 A

Name ______(please print)

1. Use Logarithmic Differentiation to calculate dy/dx for $y = \frac{(3x-2)^4(5x+7)^3}{(2x+8)^6}$. (circle your answer)

$$\frac{dy}{dx} =$$

(6)

2.
$$f'(x) = (x-4)^2(x-6)$$
 for $1 \le x \le 7$.

- (4) (a) What are the **Critical Numbers** of f on this interval? x =______
- (1) (b) At x = 3 the function f is Increasing Decreasing Not enough information (circle one)

- 3. True or False (Write the entire word)
- (1) (a) ______If f is differentiable on the interval [1.7] and f '(3)=0 then f(3) is a local max or min.
- (1) (b) ______If g(2) is a global minimum of g then g'(2) = 0.
 - 4. If f(x) is a cubic polynomial (degree=3) on the interval $0 \le x \le 8$
- (2) then f has at most ____ critical numbers on [0.8].
 - 5. $f(x) = x^2 4x + 5$ on the interval $1 \le x \le 4$. Then according to the Mean Value Theorem
- (2) (2) there is a value c so that f'(c) =______. For this function and interval c =_____.
 - 6. The graph of y = f(x) is shown for $1 \le x \le 6$. Plot and label the -----> location(s) of the c value(s) from the Mean Value Theorem.

