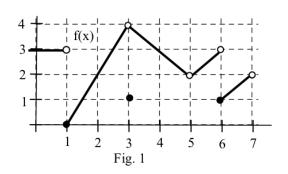
Math 151

Show Your Work! Good Luck!

October 9, 2018 Test #1 A

Name (please print)

1. Use Fig. 1 to answer the following limit questions. (2 each)


(a)
$$\lim_{x \to 5} f(x) =$$

(a) $\lim_{x \to 5} f(x) =$ (b) $\lim_{x \to 1^{+}} f(x) =$

(c)
$$\lim_{x \to 1^+} f(7-x) =$$

(c) $\lim_{x \to 1^+} f(7-x) =$ (d) $\lim_{x \to 1} INT(2x+1) =$

(e)
$$\lim_{h\to 0} \frac{f(2+h)-f(2)}{h} =$$

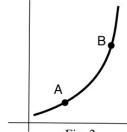
Using the methods of this class calculate the following limits. (Show your work. No work = no points.)

(3) (a)
$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x^2 + x - 6} =$$

(a)
$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x^2 + x - 6} =$$
 (3) (b) $\lim_{x \to 2} \frac{1 - |x - 5|}{x^2 - x} =$ (as an exact fraction)

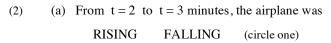
(3) (c)
$$\lim_{x \to 4^{-}} \frac{INT(2+x)}{x+3} =$$

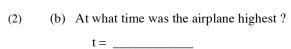
(3) (c)
$$\lim_{x \to 4^{-}} \frac{INT(2+x)}{x+3} =$$
 (3) (d) $\lim_{x \to 0} \left\{ 4 + \frac{\sin(3x)}{2x} \right\} =$ (to 2 decimal places)

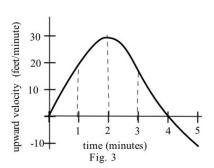

3. Write the equation of the tangent line to the graph of $f(x) = x^3 + \frac{8}{x} - 3x$ when x = 2 (show work!)

(4)

See Fig. 2. B is fixed. As A moves along the curve towards B, the slope of the AB line: (circle one)


(2)


INCREASES or DECREASES or STAYS CONSTANT **5.** F(w) is the number of flu cases in Washington on week w of flu season. Translate the following into information that someone who does not know calculus can Fig. 2 understand. Use complete sentences. " F(4) = 87 and F'(4) = 5"



(4)

6. Fig. 7 shows the **upward velocity** of a toy airplane during a period of several minutes.

7.
$$g(x) = \begin{cases} A + x^3 & \text{if } x < 1 \\ 5x + 2 & \text{if } 1 \le x < 4 \\ B - 2x & \text{if } x \ge 4 \end{cases}$$
 (a) Find A so g is continuous at $x = 1$. $A = \underline{\qquad}$

- (b) Find B so g is continuous at x = 4. $B = _____$

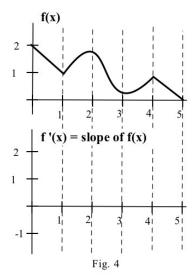
(2)(2)

8. (a) Carefully **define** the derivative

$$f'(x) = \frac{d f(x)}{d x} =$$

(3)

(b) Give one example of what f'(3) measures?


(2)

(c) If the units of x are dollars and the units of f are meters, then the units of $\frac{d f(x)}{d x}$ are _____

(2)

9. Fig. 4 shows the graph of y = f(x). On the lower part sketch the graph of $y = \{ slope of f(x) \} = f'(x)$. ----->>

(4)

10. True or False (write the entire word)

(1) _____ If
$$\lim_{x \to 3} f(x) = 4$$
 then $f(3) = 4$

(1) _____ If g(x) is continuous at x=2 then g(x) is differentable at x=2.

11. Calculate these derivatives using the methods of this class -- show your work. CIRCLE YOUR ANSWER.

You do NOT need to simplify once you have taken all of the derivatives in a problem.

(a)
$$f(x) = Ax^4 + Bx^3 - Cx + \pi$$

(a)
$$f(x) = Ax^4 + Bx^3 - Cx + \pi$$
 (b) $g(t) = \frac{4}{t^3} + 8\sqrt{t} + 2t^3$

$$f'(x) =$$

$$\frac{d g(t)}{dt} =$$

(4 points each)

(c) (d)
$$h(x) = (x^2 + 7) \cdot \cos(x)$$
 (d) $g(x) = (5x^3 + 4)^2$
 $D(h(x)) = g'(x) =$

(d)
$$g(x) = (5x^3 + 4)^2$$

 $g'(x) =$

(e)
$$f(x) = 3x^4 + \frac{2}{x} + 6x$$
 $D(D(f(x)) =$

(This is just the derivative of the derivative.)

(f)
$$D\left(\frac{x^3+7}{x^2+\sin(x)}\right) =$$

(g)
$$D(| x - 3|) =$$

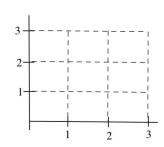
12. The values for f and g and their derivatives are given in the table. Use these values to find these derivatives. Each answer should be a number.

X	0	1	2	X	0	1	2
f(x)	2	4	2	g(x)	3	0	4
f '(x)	3	-1	5	g '(x)	1	-4	2

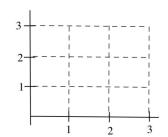
At
$$x = 0$$
 $D(1+2f(x)+3g(x)) = ______$

(2 each)

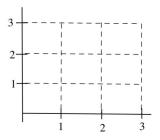
At x=1
$$D(f(x) \cdot g(x)) =$$


At x=2
$$D\left(\frac{g(x)}{1+f(x)}\right) =$$

- **14.** If f'(x) is always positive and f(3) = 0 then (circle one)
- (2) (a) f(2) < 0


(2 each)

- (b) f(2) = 0
- (c) f(2) > 0
- (d) not enough information
- **15.** If $f(x) \ge 0$ for all x values, then (circle one)


- (2) (a) f'(x) is always positive (b) f'(x) is sometimes positive (c) f'(x) is never positive (d) not enough information
- **16.** (a) Draw a function f for $1 \le x \le 3$ so f(2)=3and $\lim_{x \to 0} f(x) = 1$

(b) Draw a continuous function f for $1 \le x \le 3$ so that f(2)=2and $\lim_{h\to 0} \frac{f(2+h) - f(2)}{h} = -1$

(c) Draw a continuous function f with f'(1)<0, f'(2)=0 and f'(3)<0

Bonus (+1 if correct)

Find a function f(x) so that $f'(x) = 12x^3 + 4\sin(x) + 7$. f(x) =

The End -- tests back tomorrow (Possible points = 101 + 1 bonus point)