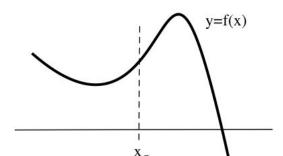
1. Calculate these 5 derivatives (Do **not** simplify once all derivatives are calculated.)

Show work & circle your final answers.

(a)
$$D(e^x \cdot \sin(x^3)) =$$

(5 each)

(b)
$$D(\tan^5(2x+3)) =$$


(c)
$$\frac{d}{dt} \left(\ln \left(e^{2t} + \cos(t) \right) \right) =$$

(d)
$$\frac{d}{dt} \left(\frac{t^3 + \sin(t)}{7 + \cos(t)} \right) =$$

(e)
$$f(x) = \sqrt{\cos(3x) + \sec(5x)}$$
. $f'(x) =$

(f)
$$g(x) = e^{2x} + \sin(3x) + \frac{1}{x}$$
 g ''(x) =

2. The figure shows the graph of f(x) and the location of x_0 . Find and LABEL the locations of x_1 and x_2 obtained

(3)

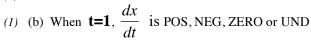
3. (a) The sequence x0, x1, x2, x3, ... will always converge to a

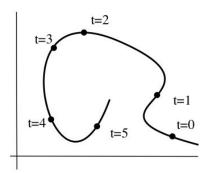
(2) root of the function. True False (circle one)

(b)
$$f(x) = x^3 - x^2 + 4$$
. If we start with $x_0 = 1$,

then using Newton's Method

by using Newton's Method..


$$(4) \hspace{1cm} x_1 = \underline{\hspace{1cm}} \hspace{1cm} , \hspace{1cm} x_2 = \underline{\hspace{1cm}} \hspace{1cm} (2 \hspace{1cm} \text{decimal places})$$


4. (a) See the figure at the right, and use that information to fill in the blanks in the table with

POS, NEG, ZERO or UND when **t=3**.

dx/dt	dy/dt	dy/dx
		-

(3)

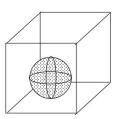
5. The location of an robot at time t minutes is $x(t) = 4t + 3\sin(t)$, $y(t) = t^2 - 2\cos(t)$ meters. (RADIAN mode!) (Round answers to TWO decimal places. UNITS!)

(2) (a) When t = 2 minutes, the location of the robot is. (,)

(9) (b) When t = 2 minutes, $\frac{dx}{dt} = \underline{\qquad} \frac{dy}{dt} = \underline{\qquad} \frac{dy}{dx} = \underline{\qquad}$

(3) (c) When t = 2 minutes, the SPEED of the robot is _____

6.	Each answer should be a number. Use the table for the g and g 'values.			*
	(a) at x=2 D(g(3x-4)) = (b) at x=3 D($g^3(x)$) =	x	g(x)	g '(x)
	(a) at $x=2$ D($g(3x=4)$) =	0	2	g '(x) -3
		1	1	4
		2	3	2
	(c) at x=1 D($g(x^2-1)$) = (d) at x=3 D($x \cdot g(x)$) =	3	1 3 2 1	-1
(2		4	1	0
(2 6	each)			


- 7. A bug is crawling up and down on a pole (the y-axis marked in cm), and the bug's height at time t minutes is $h(t) = t^3 6t^2 + 110$ cm. (Be sure to include units with your answers.)
- (3) (a) What is the bug's velocity after 3 minutes?
- (3) (b) When will the bug change directions?
- (3) (c) How far will the bug crawl during the first 6 minutes?
- (3) (d) What is the bug's acceleration when t=2 minutes?

- 8. The number of fish in the lake at time t weeks is $F(t) = 300 + 40\sin(t) + 60 \cdot e^{-0.5t}$. How fast is the fish population changing when t = 4?

	•				
10	Do 2 of these problem	is. (If you do all	three I will only	v orade A and B `	INITS

- A. A young woman has placed a 25 foot long ladder against a house but her mother is pulling the bottom of the ladder away from the house at a rate of 3 feet per second. How fast is the top of the ladder falling when the bottom of the ladder is15 feet from the bottom of the wall? _______ (2 decimal places)
- Height
- B. A cube (all edges are the same length) has edge length 8 cm and the edges are growing at 4 cm/ hour, A sphere is inside the cube. The sphere has radius 3 cm
 - and the radius is increasing at 2 cm/hour. How fast is the volume inside the cube but outside the sphere changing? (sphere volume $V = \frac{4}{3}\pi R^3$)

(2 decimal places)

C. A red car is 60 miles north of Bellevue and driving south at 30 miles per hour.

A blue car is 50 miles east of Bellevue and driving east at 20 miles per hour. How

fast is the distance between the cars changing? _____ (2 decimal places)

Problem A B C (circle one)

Problem A B C (circle one)

(6 each)

BONUS: (+1 if correct) What did Erdos do with the money he got from awards?