
	Math 152		
Show Your Work!	January 25, 2011	Name	
Good Luck!	TEST #1 C		(please print = 1 point)
1. Carefully and comple	tely state Part 2 of the Fundame	ental Theorem o	of Calculus.

(5) If

then

2. Use the graph in Fig. 1 to evaluate the following integrals. (2 points each)

Suppose (using this graph) x is time (minutes) and y=f(x) is your upward velocity (feet/minute) on a pole. If you start (x=0) 12 feet up the pole, then how high are you at time x=10? height = _____

3. DEFINE:
$$\int_{a}^{b} f(x) dx = \lim_{\rightarrow} dx$$

(4)

4. (a)
$$\frac{d}{dx} \left(\int_{2}^{7} \sqrt{1 + x^5} \, dx \right) =$$
 _____ (b) $\frac{d}{dx} \left(\int \sqrt{1 + x^5} \, dx \right) =$ _____

(8)

(c)
$$\frac{d}{dx} \left(\int_{1}^{\sin(x)} \sqrt{1+t^5} dt \right) =$$
 (d) $\int \left(\frac{d}{dx} x^4 dx \right) =$

5. Use the partition $P=\{1, 2, 4, 5\}$ and $c_i = right$ endpoints to find the

value of
$$V = \sum_{i=1}^{3} f(c_i) \cdot \Delta x_i =$$

x		1	2	3	4	5
f((x)	5	7	4	5	6

(4)

6. Quick antiderivatives (No need to show work, just answers) (2 points each.)

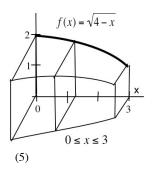
(a)
$$\int 7e^{2x} dx =$$
 (b) $\int \frac{4}{x+2} dx =$ (c) $\int 5\cos(3x) dx =$

7. Evaluate these definite integrals. Show your work. Give answers to 2 decimal places. (7 points each.) 4 3

(a)
$$\int_{2.6}^{4.5} INT(x) dx =$$

(b)
$$\int_{0}^{2} 4x \cdot \cos(x^2 + 1) dx =$$

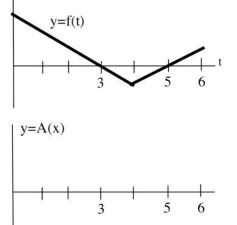
(c)
$$\int_{1}^{4} \frac{6x}{x^2 + 1} dx =$$


8. Find the following antiderivatives. (6 points each)

(a)
$$\int \sqrt{7x+3} dx =$$

(b)
$$\int \frac{\cos(x)}{3 + \sin(x)} \, dx =$$

(c)
$$\int \frac{x^2 + 5x + 13}{x + 2} dx =$$


- 9. Water is flowing into and out of a tank. The flow rate at time t hours is $v(t) = 4(x - 3)(x - 5) = 4x^2 - 32x + 60$ gal/hr (v>0 means "into", v<0 means "out of"). At the start (t=0) the tank contains 300 gallons.
- (2) (a) When $(0 \le t \le 6)$ does the tank contain the most water?
- (6) (b) How much water is in the tank when t=5?

10. What is the volume of the shape in the figure? Each "slice" is a square.

(Show your work.) volume = _____ (number)

- 11. The graph of y=f(t) is given in the top graph.
- (6) (a) On the bottom graph draw the graph of $A(x) = \int_{0}^{x} f(t) dt$

- (2) (b) A'(4) is {Positive} (Negative) (Zero) (Does Not Exist)
- (2) (c) If the t units are "ft" and the f(t) units are "ft²/min",

then the A(x) units are _____

12. Biographies (1 point each)

- (a) Name the two co-inventors of calculus: ______ and _____
- (b) How did Archimedes die?

The end! (total points = 103)