Show Your Work! Good Luck!

November 5, 2008 TEST #2 A

(please print)

Name

1. Represent the volume of the solid in Fig. 1 as a definite integral, then use the FTC to evaluate it.

volume =
$$\int dx =$$
_____(number)
(7)(2)

2. A solid region is formed when the he shaded area in Fig. 2 is revolved around the line y = 3. Represent the volume as a definite integral. (Do NOT evaluate it.)

volume =
$$\int dx$$

(7)

3. Represent the length of the curve $y = 1 + x^3$ from x=-1 to x=2 as a definite integral and then use your calculator to evaluate the integral (2 decimal places).

length =
$$\int$$
 dx = _____ (number)
(7)(2)

4. Represent the length of the parametric curve $x(t) = 2 + \cos(t)$ $y(t) = t^3 + 2t$ for $0 \le t \le 3$ as a definite integral. (Do NOT evaluate it.)

length =
$$\int dt$$

(7)

5. A cylindrical tank is 5 feet tall and has a radius of 2 feet. It is filled with a liquid that has a density of 42 pounds per cubic foot. How much work is done to empty the top 3 feet of the liquid over the top of an 11 foot tall wall? (Show your work! No work = no points.) Work = ______(7)

6. A spring has a natural length of 12 inches (rest length), and a 5 pound weight stretches it to a length of 15 inches. Calculate the work done to stretch the spring from a length of 14 inches to a length of 20 inches. (Show your work.) Work = ______

(7)

7. A 100 pound weight is being lifted from the ground to the top of a 20 foot tall building using a chain that weighs 4 pounds per foot. You do HALF of the total work if you lift the weight to a height of H feet. H = _____

(7)

A strange object is made of three uniformly dense rectangles (see figure).
 Determine the coordinates of the center of mass of the object.

 $\bar{x} = _ ~ \bar{y} = _$ (3)(3)

- 9. A region is bounded by the curve y = 1 + x², the x-axis, and the vertical lines x = 0 and x = 2. Determine x̄ = _____ (Do not calculate ȳ)
 (7)
- 9. The right triangle with base B and height H is shown in the figure. Determine \overline{y} _____ (Do not calculate \overline{x})

 The units of x are days, the units of f(x) are feet per day, and the units of g(x) are cats. Then the units of

(a)
$$\int g(x) \, dx$$
 are _____(2) (b) $\int \frac{f(x)}{g(x)} \, dx$ are _____(2)

- (c) $\int f^2(x) \, dx$ are _____(2)
- 11. Write MAPLE commands to (2 each)
 - (a) Evaluate $\int_{1}^{4} x^3 + \sin(2x) dx$: _____

(b) Graph
$$y = 1 + \sin^2(x)$$
 for $0 \le x \le 7$:

12. (a)
$$\int \frac{5e^x}{2+e^x} dx =$$
 (b) $\int \cos(x) \cdot \sqrt{3+\sin(x)} dx =$

(4)(4)

(7)

(c)
$$\int 6x \cdot \sec^2(x^2) dx =$$
_____(4)

The end!